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Abstract

We propose a model of electoral competition where candidates offer excludable
transfers to voters connected on a social network. We derive concentration results
for weighted graphs to compare large societies, with social structure represented by
asymptotic properties. We find that the diversion of public resources towards private
provision generically favors the majority group and is least prevalent when groups are
equipopulous and segregated. If candidates have heterogeneous information about
the electorate, information can overcome the tyranny of the majority when groups
are segregated or, given weak peer effects or an overall poor quality of information,
candidate office motivations are low.
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Politicians compete by making campaign promises, which often include targeted attempts
to induce individuals to vote. Transfers encourage voters but do not fully govern their
decisions. In addition to policy platforms and public good provision, a voter’s choice is
influenced by their social connections, making a candidate’s ability to buy any given voter
dependent on how anchored that voter is by the opinions of their peers. However, this
implies that candidates can also indirectly sway voters by using private transfers to sway
their friends. As a consequence, the structure of society regulates the form and efficacy of
redistributive politics. Then, which societies are more or less conducive to redistributive
electoral strategies?

We study a model of a large election in which candidates compete to influence policy-
motivated voters with targeted and excludable transfers, which take the form of campaign
promises. The model borrows from the framework in Battaglini and Patacchini (2018), who
study campaign contributions and the role of pivotal voting in small legislative elections.
We additionally incorporate a trade-off between redistribution and a public good; however,
our primary contribution is in using the model to systematically compare redistributive
strategies across different large societies through the use of random graphs.

At the core of the model is network dependence: voters not only value direct transfers,
but also those extended to their peers. The effectiveness of targeted redistribution depends
on the ability of candidates to exploit differential benefits of swaying some voters relative
to the losses this induces from all others due to diversion of public resources. At the same
time, candidates must also avoid triggering negative spillovers when influential voters are
dissatisfied with allocations. The unique equilibrium transfer to a voter is proportional
to a measure of network centrality, which captures the incentive to target voters who
influence others. Similarly to previous work on finite population noncooperative games
(Ballester, Calvó-Armengol and Zenou, 2006; Battaglini, Sciabolazza and Patacchini, 2020;
Chen, Zenou and Zhou, 2022), we derive a result in which a public good trade-off causes
transfers to be proportional to each individual’s share of the total centrality on the network.

Most importantly, the model is used to explore the effects of social structure in large
general elections. Because centrality is sensitive to small changes on the network, recovering
a comprehensive account of how equilibrium behavior responds to changes in society’s
underlying structural features would require accounting for all possible realizations of society
given those underlying features, which is neither theoretically tractable nor empirically
possible. To overcome this problem, we incorporate stochastic block models, where deep
parameters that govern network formation correspond to the structural features of a society.
By extending techniques for random graph analysis (Chung and Radcliffe, 2011; Dasaratha,
2020; Mostagir and Siderius, 2021), we derive results that allow us to substitute complex
weighted graphs with their expected counterparts and derive closed-form expressions for
expected equilibrium strategies. This creates a direct mapping from the fixed characteristics
that form social networks to expected equilibrium behavior.
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Focusing on candidate strategies on the expected network allows us to draw sharp
conclusions about the effects of social structure that hold asymptotically in large societies.
Specifically, we show that expected equilibrium strategies are necessarily arbitrarily close
to the equilibrium strategies of any realization, making this analysis possible. Obtaining
expressions that depend on the social structure, and not on the arbitrary structure of a
specific realization, then permits the systematic comparison of different societies.

Our baseline results suggest that diversion of public resources will be most prevalent when
groups are integrated and there is a significant size disparity between them. The similarity
in group size—or fractionalization (Alesina et al., 2003)—matters not because of differences
in policy preferences as in Easterly and Levine (1997) and Alesina, Baqir and Easterly
(1999), but because it affects the proportion of potential ties that are within or between
groups and hence the level of social pressure that can be achieved. Segregation, on the
other hand, typically decreases the value of transfers as it reduces the candidate’s expected
return—as a voter becomes less connected to individuals outside their group, their ability
to influence members of the other group is attenuated.

Finally, we also consider the case where candidates enjoy more accurate information
about the members of one group, creating an ex-ante incentive to target them. We are
primarily interested in understanding when the effect of information on candidate strategies
is in tension with that of the network from our baseline. While a general feature of the
baseline model is that members of the majority group attract greater investment due to
their greater potential to influence others, we find that better information on minorities can
make members of their group more attractive despite the network effect, overcoming the
“tyranny of the majority.” This information effect will dominate the pure network effect
when segregation is low, as the tendency of voters to sort into isolated social groups is a
primary source of inefficiency from the candidate’s perspective. Moreover, the information
effect may prevail when candidate office-motivations are low and the expected marginal
gain from network spillovers is sufficiently low. This is because a reduced incentive to
redistribute at the expense of a public good causes candidates to prefer focusing resources
on more predictable voters.

Related Literature.—Our paper is most closely related to work in electoral competition
and redistributive politics. Empirical evidence has shown that politicians strategically
target individual voters for electoral gain (Enikolopov, 2014; Alatas et al., 2019). To
understand this phenomenon, theoretical work has explored a number of mechanisms
governing redistributive strategies: the incentives for candidates to create inequalities
under different electoral systems (Myerson, 1993), the ability of excludable transfers to
induce inefficient supermajority coalitions (Groseclose and Snyder, 1996; Banks, 2000), the
difficulty of overcoming private incentives by providing public goods (Lizzeri and Persico,
2001), the role of varying commitment structures (e.g., campaign promises or up-front
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voting) and institutions in mitigating inefficiencies in redistribution (Dekel, Jackson and
Wolinsky, 2008), and the institutional factors driving the strategies of clientelist machines
(Gans-Morse, Mazzuca and Nichter, 2014).

In these previous models, variation in electoral redistributive strategies has been driven by
either individual factors or institutional environments. Explanations from empirical studies,
however, have regularly emphasized the role of social connections. For example, recent
studies have provided evidence that politicians are responsive to micro-level social network
structure when deciding how to allocate targeted transfers, such as political connections
(Caeyers and Dercon, 2012; Fafchamps and Labonne, 2017) or social influence (Cruz, 2019;
Cruz, Labonne and Querubin, 2020).

We incorporate these observations into a model of individually targeted redistribution
on a known social network. In this regard, we build on the innovations of recent work
in the political economy of networks that exploit local linearities in agent strategies to
generate tractable results. This includes studies on the effects of network topology on
information spread and learning (Golub and Jackson, 2012; Canen, Schwartz and Song,
2020), pricing under oligopolistic competition (Chen, Zenou and Zhou, 2022), public goods
provision (Elliott and Golub, 2019), and legislative activities (Battaglini, Sciabolazza and
Patacchini, 2020; Canen, Jackson and Trebbi, 2023).

With regard to the game played on a realized graph, the closest model to ours is offered
by Battaglini and Patacchini (2018), who study small legislative elections. Specifically, we
adopt the approach in which voters are influenced by an average of their peers’ probabilities
of taking an action (Calvó-Armengol, Patacchini and Zenou, 2009; Lee et al., 2021). We
depart from previous work by considering an expected rather than a fixed graph, permitting
direct analysis of the impact of average features of society on equilibrium strategies.

To do so, we employ stochastic block models, which have been widely used to understand
social phenomena and have been shown to perform well in approximating real social
networks (Ghasemian, Hosseinmardi and Clauset, 2019; Vaca-Ramírez and Peixoto,
2022). Two noteworthy examples in economics include Sadler (2023), which incorporates
stochastic block models to extend the fixed-graph game of Yildiz et al. (2013), and Golub
and Jackson (2012), which uses a variant to study the impact of network homophily on
learning. While we focus on a model of redistributive politics in the present analysis, social
network structure is important in many areas of social science, and our overall approach
can easily be extended to other applications such as consumer choice. For instance,
sellers may seek to offer targeted prices to consumers who are influenced by their social
connections’ consumption behavior (Wang and Wang, 2017). Our framework would then
allow us to study the features of societies that lead to higher overall prices and to more or
less price discrimination.
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I. Model

We begin by outlining the model for a fixed graph, which resembles the approach in
Battaglini and Patacchini (2018). In the sections thereafter, we turn to our primary task
of exploring the role of social structure through the use of random graphs.

There are n voters faced with a choice between two candidates. All voters are located
on a network G, which is assumed to be connected. We use the terms network and graph
interchangeably throughout the paper to refer to a directed weighted graph, which is an
ordered triple (V, E , w) where V is a set of n vertices (representing voters) and E ⊆ {{i, j} :

i, j ∈ V ∧ i ̸= j} is a set of directed edges with corresponding weight function w : E → R+.
Each candidate k = 1, 2 is associated with a policy yk = k, where the policy space is a subset
of R, and each voter i ∈ V is endowed with a group membership ℓi = 1, 2, which corresponds
to an ideal policy xi = ℓi. Substantively, groups may be interpreted as corresponding to
any grouping that is both socially and politically meaningful, such as political parties and
ethnic or religious groups.

To gain vote share, candidate k can extend n private transfers, bik ≥ 0. These payments,
however, come at the expense of a public good, which the candidate also values. A candidate
k’s problem is to choose bk ∈ Rn+ that solves

max
bk

αk
∑
i∈V

ϕik(bk, b−k)− bk · 1⊤(P)

subject to bik ≥ 0 for all i

where b−k ∈ Rn+ are the transfers offered by the opposing candidate, ϕik(·) ∈ (0, 1) is the
probability voter i votes for candidate k net of transfers, and αk > 0 represents the value
placed on one vote by candidate k. We thus normalize the value placed on a unit of public
good by the candidate to 1 so that αk can be interpreted as the candidate’s relative degree
of office motivation. In particular, a small αk implies that candidate k highly values the
public good, while larger αk implies greater office motivation.

The expected payoff voter i receives from candidate k is given by

(1) Ui(k) = −(xi − yk)
2 + u(bik) +

∑
j∈Ti(G)

wijϕjk(b)− γ
∑
m∈V

bmk + εik

where u(·) is voter utility over transfers, which we assume satisfies u′(·) > 0, u′′(·) < 0, and
u′′′(·) ≥ 0, as well as limb→0 u

′(b) = ∞ and limb→∞ u′(b) = 0. In subsequent sections, we
will assume logarithmic utility for comparative statics.

Voters support the candidate that offers them a higher total utility. There is no obligation
to vote for a candidate who offered them a payment, but payment is received after the
election and are thus campaign promises in the sense of Dekel, Jackson and Wolinsky
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(2008). First, all voters care about policy and a public good. Policy preferences follow a
standard quadratic loss function and value a unit of public good at γ ≥ 0, so that they
incur a loss of γ for every unit of transfers offered by a candidate to any voter.

Second, voters have private information in the form of a valence shock for each candidate,
εik ∈ R. Without loss of generality, we can normalize εi2 = 0 and define εi := εi1, which we
assume is an independent, uniformly distributed mean-zero random variable with support
on
[

1
−2θ ,

1
2θ

]
. We interpret θ as the quality of candidate information about the utility of

transfers to voters, with smaller θ indicating less informed candidates.
Third, voters also like to vote in alignment with their social connections. ϕik(·) denotes

the probability voter i votes for candidate k given all transfers, but before the realization
of the valence shock εi. Then, each voter i places weight wij > 0 on voter j’s probability of
voting for candidate k if there is a directed edge from voter i to j, and 0 otherwise. In the
graph G, the set of a voter i’s peers is denoted by Ti(G) ⊆ V.

For the solution to (P) to be well-defined, we make two assumptions on θ.

Assumption 1. maxbk θ (u(bik) + 1− γ
∑

i bik) <
1
2 for all i, k.

With our conditions on u(·), this ensures that all voters have a well-defined interior
probability of voting for either candidate for any transfer profile and is equivalent to a
condition that θ is sufficiently small.

Before stating the second assumption, we must first define the following object.

Definition 1. Consider a realized graph G and a corresponding adjacency matrix A such
that for all i, j ∈ V, Aij = 1 if j ∈ Ti(G) and Aij = 0 otherwise. Then, the induced
adjacency matrix Ã is given by, for all i, j ∈ V, Ãij = wijAij.

The induced adjacency matrix accounts for the fact that a voter may be more influenced by
one peer than another. Letting I denote the identity matrix, we also assume the following.

Assumption 2. I − 2θÃ is invertible.

Assumption 2 is equivalent to assuming that θ is smaller than 1
2λ1

, where λ1 is the largest
eigenvalue of the matrix Ã. The largest eigenvalue is bounded by n, making θ ≤ 1

2n

sufficient. Since transfers are in units of utility over policy, this does not imply transfers
must be small.

Timing.—The game proceeds as follows.

(i) Nature randomly chooses a private utility shock for each voter, εi ∼ U
[−1
2θ ,

1
2θ

]
.

(ii) For all voters i ∈ V, each candidate k = 1, 2 offers a payment bik ≥ 0.

(iii) Each voter i ∈ V casts a ballot for candidate 1 or 2, vi = 1, 2.

(iv) The winning candidate enacts their promised transfer program and voters’ utility is
realized.
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A. Equilibrium

A voter will cast a ballot for candidate 1 if and only if Ui(1) ≥ Ui(2). Here, candidates
will not be able to perfectly anticipate voting behavior due to their imperfect information
over voter preferences. Using equation (1), we can rewrite this as a condition on the size of
the valence shock,

(−1)xi−1 + u(bi1)− u(bi2) +
∑

j∈Ti(G)

wij(2ϕj − 1) + γ
∑
m∈V

(bm2 − bm1) ≥ εi,

where we have denoted ϕi := ϕi1(b) = 1−ϕi2(b) the probability a voter i votes for candidate
1. Noting that εi ∼ U

[−1
2θ ,

1
2θ

]
implies Pr(εi ≤ ε) = 1

2 + θε, we can correspondingly write
each voter’s probability for voting for candidate 1 as, for all i ∈ V,

(2) ϕi =
1

2
+ θ

(
(−1)xi−1 + u(bi1)− u(bi2) +

∑
j∈Ti(G)

wij(2ϕj − 1) + γ
∑
m∈V

(bm2 − bm1)

)
.

Here, ϕ gives the unique vector of vote probabilities given payment profiles. While each
voter’s utility is subject only to their neighbor’s vote probabilities, this system of equations
necessarily implies that a single voter’s probability of supporting candidate 1 is a function
of all other voter’s probability of supporting 1. This occurs because, for example, a voter i’s
probability ϕi is affected by i’s neighbor j’s probability ϕj , which in turn is affected by j’s
neighbor m’s probability ϕm. Because we rule out disconnected components, ϕi will both
affect and be affected by all other voting probabilities throughout the entire network.

In equilibrium, each candidate chooses a vector of transfers that maximizes their utility,
taking the other candidate’s strategy as given. This gives rise to the n first-order conditions,

n∑
j=1

∂ϕj
∂bik

=
1− λ∗ik
αk

where λ∗ik is the Lagrange multiplier associated with the nonnegativity constraint for an i, k
pair (not to be confused with eigenvalues λ). Differentiating equation (2), we have

∂ϕi
∂bh1

= θ

u′(bh1)1(i = h) + 2
∑

j∈Ti(G)

wijϕ
′
j − γ

 .

Thus, the candidates’ problem can be rewritten as

(3) (J [u]− Γ)⊤ ·
(
I − 2θÃ

)−1
· 1 =

(1− λ∗)

αkθ
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where J [·] is a diagonal matrix with u′(bi) as the nonzero entries, Γ is an n × n square
matrix with γ as every element, 1 denotes an n-vector of ones, and λ∗ is an n-vector of
Lagrange multipliers.

From the candidates’ problem in equation (3), we can recover candidate k’s equilibrium
transfer to voter i,

(4) bik =
[
u′
]−1

(
1

ci(w, θ;G)

[
γC(w, θ;G) + 1

αkθ

])
,

where ci(·) is the ith element of c = (I − 2θÃ)−1 · 1 and C(·) :=
∑

i∈V ci(·). Here, c is
equivalent to Katz-Bonacich centrality on the weighted directed network corresponding to
Ã with attenuation parameter 2θ. The value of a voter is thus proportional to their share
of total centrality on the graph, with effects on more distant connections attenuated by the
predictability of each voter’s behavior, θ.

This behavior is intuitive given the basic strategic environment: the socially optimal
transfers to voters would correspond to a transfer scheme such that the marginal value is
equated with γ, weighted by the total centrality on the network, which can be taken as a
measure of the additional positive spillover candidates gain from providing a public good.
Network spillovers also incentivize candidates to provide additional transfers beyond this
level, however. The network induces a trade-off between the positive effect associated with
providing a transfer to i, which are captured by ci and the concomitant negative effect this
induces via every other voter being deprived of the public good, captured by C.

The relative value of these spillovers is moderated by αk—that is, more office-motivated
candidates place higher value on the additional increase to expected vote share afforded
by targeting high-centrality voters—and by θ, which determines the certainty of a realized
increase in vote share. Finally, it is not necessarily true that an increase in the number of
voters results in a decrease in transfers, since it may be possible to add another voter in
such a way that centrality increases for some i due to the creation of new paths.

Disconnected Model.—In the case G0 where the network is completely disconnected (or,
equivalently, where it is completely connected with weights such that all voters have an
equal centrality of 1), this reduces to simply

(5) bik =
[
u′
]−1

(
γαkθn+ 1

αkθ

)
From this, it is apparent that the candidate’s office motivation αk has two competing

effects on equilibrium transfers: candidates have an incentive to provide more transfers to
individuals, but also to offer less to everyone due to the penalty voters impose on reduction
in public good provision. Importantly, the former effect will always prevail, so that office-
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motivated candidates will always allocate more resources to private transfers even as the
value of public goods approaches infinity. When there is heterogeneous information about
the preferences of individual voters, however, the balance of these two channels is more
subtle, a possibility we take up in Section IV.

It is also of note that, if both candidates have identical degrees of office motivation
(α1 = α2 = α), then they will also choose the same transfer profile in equilibrium. This can
be thought of as an analogue to the Median Voter Theorem for spatial models of competition
(Downs, 1957); it is optimal for both candidates to respond by extending offers to the voters
that offer the most value, here determined entirely by their network positions. A further
implication is then that targeted distribution only influences aggregate electoral outcomes
if candidates diverge in their motivations. When candidates are perfectly symmetric, their
offers exactly offset one another so that voting decisions are determined only by policy and
valence.

In general, equation (4) implies that equilibrium strategies will depend on the distribution
of centralities. To study the impact of social structure on these strategies, we now transition
to considering expected strategies on random graphs.

II. Random Graphs and Social Structure

In this section, we extend results from random graph theory that justify and facilitate
our approach. In particular, these techniques allow us to consider centrality on the
average graph only, permitting analysis of comparative statics explicitly in terms of social
structure—that is, the underlying parameters that govern the social network generative
process—rather than of a single realized graph. In the subsequent section, we will
employ these results to derive closed-form expressions for the centrality of voters in each
group, from which we can recover equilibrium strategies of candidates in terms of group
fractionalization, segregation, and density.

We now formalize the concept of an average network in the context of our model, which
can be conveniently represented through its average adjacency matrix.

Definition 2. The average induced adjacency matrix ¯̃A(n) for a graph of size n is given by,
for all i, j ∈ V(n),

¯̃A
(n)
ij = w

(n)
ij p

(n)
ij .

where w(n)
ij is the weight voter i places on voter j when i considers j a peer and p(n)ij is the

probability that voter j is realized as a peer by voter i.1

For the following results, we assume that a graph G(n) = (V(n), E(n), w(n)) of size n,
analogously defined as in the previous section, is randomly drawn according to a two-group

1 Throughout the article, we use the convention that X(n) is an object pertaining to a graph of size n whereas Xn

is a sequence of objects with its nth member being X(n).
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Figure 1. Fixed vs. expected graphs, wijpij =

{
ρ if ℓi = ℓj

δρ otherwise

stochastic block model with share s(n) ≤ 1
2 of group 1, a probability p

(n)
H ∈ (0, 1) of intra-

group connection, and a probability p
(n)
L ∈ (0, p

(n)
H ] of inter-group connection. That is,

voters are assumed to be endowed with group membership ex ante and each possible dyad
forms a tie independently and randomly with a probability that depends only on whether
its members belong to the same group. We further assume for simplicity that for each graph
G(n), we have w(n)

ij = w
(n)
H for in-group voters and w

(n)
ij = w

(n)
L for out-group voters, with

the natural assumption that w(n)
H ≥ w

(n)
L > 0.

Given the generative parameters Υ(n) = (s(n), w
(n)
L , w

(n)
H , p

(n)
L , p

(n)
H ), we assume that the

corresponding sequence of parameters converges, Υn → Υ as n → ∞. Since weights and
probabilities do not have separable effects on average, we can re-parameterize the model
by letting ρ := limn→∞w

(n)
H p

(n)
H and δ := 1

ρ limn→∞w
(n)
L p

(n)
L , so that ρ > 0 captures the

baseline propensity to form in-group ties and δ ∈ (0, 1) reflects the extent of differential
propensity to form in-group connections. Naturally, δ−1 provides our measure of social
segregation (or analogously, homophily).

Figure 1 illustrates the difference between a fixed graph realization and an expected
graph in these terms, while Figure 2 highlights the roles of the three main parameters
that asymptotically modulate social structure: s governs relative group size and hence
fractionalization, δ determines the strengths of between-group ties relative to in-group ties
and therefore segregation, and ρ measures within-group tie strength and corresponds to
density. In particular, expected density can then be given by ρ [1− 2s(1− s)(1− δ)] for
large n.2 Here, the first term reflects the effect on density of a simple increase in connection
probabilities, while the second reflects the attenuating impact of homophily as the degree
of fractionalization changes, impacting the proportion of potential cross-group ties.

2 The expected density is the expected number of ties within and across each group out of the total number of
possible ties on the network, i.e., 1

n
(n − 1)

(
sn(sn− 1)ρ+ (1− s)n((1− s)n− 1)ρ+ 2s(1− s)n2δρ

)
. Observing

that as n → ∞, n
n−1

≈ 1, we then have that ρ
n−1

(2ns(δ − δs− 1 + s) + n− 1) ≈ ρ (1− 2s(1− s)(1− δ)). Note
that density is here defined as the weighted proportion of potential ties that are realized.
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Figure 2. Social structure as asymptotic properties of random graphs

The main result, which draws on the asymptotic bounds on the average adjacency
matrix derived in the appendix, allows us to obtain closed-form expressions for each voter’s
centrality that hold with high probability given large n. In particular, the following lemma
allows us to make asymptotic statements that will hold with high probability and therefore
justifies the analysis of the expected, rather than the realized, network in the context of
large elections. The following assumptions characterize bounds on the kind of society for
which the asymptotic approximation can be expected to hold.

Assumption 3. Take any ψ > 0 as given in Lemma 1 and define d(n)min := mini
∑

j w
(n)
ij p

(n)
ij

the minimum expected degree of a voter and w(n)
max := maxi,j w

(n)
ij > 1 the greatest weight on

any pair of voters in a society of size n. Then for all n, assume that there exists k(ψ) > 0

such that k(ψ)w(n)
max ln(n) < d

(n)
min < k(ψ)(w

(n)
max)2 ln(n).

The key observation here is that the smallest expected degree, and by extension the
expected degree of any other voter, must grow at a rate that is at least linear in the natural
logarithm of the total population size. For networks in which the degree of voters grows
too slowly, the increased sparsity of the resultant network leads to a higher probability
of disconnected structures that deviate dramatically from the properties of the average
network. At the same time, this degree must not grow too quickly relative to the largest
weight, as this can result in networks where excessive spillovers in some components cause
behavior that deviates too far from the average network.

Assumption 4. Given an average induced adjacency matrix ¯̃A(n) and an average weighted
degree matrix ¯̃D(n) such that { ¯̃D(n)}ii =

∑
j
¯̃A
(n)
ij and { ¯̃D(n)}i ̸=j = 0 for all n, define the

expected normalized Laplacian matrix as ¯̃L(n) = In×n − ¯̃D(n)−1/2 ¯̃A(n) ¯̃D(n)−1/2. Assume
that for all n, ¯̃L(n) has a second-smallest eigenvalue bounded away from zero.

We additionally require a condition on the spectrum of the average Laplacian of the
induced adjacency matrix. This guarantees that the network generating model is not too
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sparse, so that the network is connected with high probability and therefore the solution is
always well-defined.

Lemma 1. Suppose that for a sequence of random graphs Gn, Assumptions 3 and 4
hold. Moreover, denote by c(Ã(n)) the centrality vector of a realized graph G(n) and
c( ¯̃A(n)) the corresponding centrality vector of the average graph. Then, for any ψ > 0,
limn→∞ Pr(∥c(Ã(n))− c( ¯̃A(n))∥ > ψ) = 0.

See the appendix for all proofs and related results. Lemma 1 allows us to to restrict our
attention to the vector of expected centralities, which is a direct function of parameters,
since realized transfers can be expected to be arbitrarily close to these values in large
societies. We can now state the following proposition, which provides the basis for our
results on social structure.

Proposition 1. Consider a sequence of random graphs Gn drawn from a stochastic block
model. Under Assumptions 3 and 4, voter centralities can be approximated by a function
of parameters ĉ(n)(s, δ, ν, ρ) for each graph G(n). As n grows large, these approximations
become arbitrarily close to the true centralities c in any realization: for any ψ, η > 0, there
exists N > 0 such that for all n > N , Pr(|ĉ(n) − c| > ψ) < η. Then, centralities for voters
in group 1 and 2 are asymptotically equivalent to, respectively,

c1 ∼
1− 2νρ(1− s)(1− δ)

1− 2νρ(1− 2νρs(1− s) (1− δ2))

c2 ∼
1− 2νρs(1− δ)

1− 2νρ(1− 2νρs(1− s) (1− δ2))
.

Unlike realized networks, the expected network is necessarily complete, since all voters
have positive probability of being connected to all others. Note that this need not apply
to any specific realization, as all possible networks on n vertices are in the support of
the generative model. Instead, the completeness of the expected network (more precisely,
the strict positivity of the matrix of tie formation probabilities) allows us to study how
changes in generative parameters affect equilibrium strategies.3 While it remains possible
that realized networks will be drawn in such a way that the equilibrium strategy differs from
these expressions, Proposition 1 guarantees that this will occur with vanishing probability
in sufficiently large societies.

These centralities can be used to directly recover equilibrium transfers for any large
society. Since candidates’ optimal transfers differ only to the extent that they possess
asymmetric office motivation, we consider without loss of generality the transfer profile
offered by candidate 1 (henceforth “candidate”) with α1 = α selecting equilibrium transfer

3 While the adjacency matrix can be arbitrarily large, it only contains four unique values that correspond to directed
connections within and between each group. Because this generates the structure of a block matrix, it is therefore
possible to derive an explicit formula for its inverse, which in turn determines the value of each voter’s centrality.
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profile b in order to retain the focus on the effects of social structure. Let

B(n) :=
∑
i∈V(n)

[
u′
]−1

(
1

ĉ
(n)
i

[
γ [ ĉ(n) · 1⊤ ] +

1

αθ

])

denote total transfers from the candidate and

Q
(n)
ij :=

1

2
−

[u′]−1

(
1

ĉ
(n)
i

[
γ [ ĉ(n) · 1⊤ ] + 1

αθ

])
∑

h=i,j [u
′]−1

(
1

ĉ
(n)
h

[
γ [ ĉ(n) · 1⊤ ] + 1

αθ

])


2

denote inequality between voter i and j in any graph G(n).
We can then characterize ĉ := limn→∞ ĉ(n) as an explicit function of parameters to

examine how the total spending of candidates and the level of inequality between voters
depend on social structure. That is, we now consider the limiting levels of expenditure
B := limn→∞B(n) and inequality Qij := limn→∞Q

(n)
ij . Because every voter in each group

receives the same transfer on average, we can focus on any two voters i′ and j′ belonging
to group 1 and 2, respectively, and denote by Q = Qi′j′ the inequality between them. At
slight abuse of terminology, we simply refer to the objects B and Q as total transfers and
inequality, respectively.

III. Baseline Results

To recover comparative statics, we make several additional assumptions. First, we take
voter utility over transfers u(·) to be logarithmic, which is consistent with the more general
assumptions in the previous section that guarantee an interior solution. Second, we impose
that for each random graph G(n), θ(n) = ν

n for ν ∈ (0, 12). This allows ν to reflect the quality
of candidate information and satisfies our more general conditions on θ being sufficiently
small since the largest eigenvalue is bounded by n and decreasing in n at a rate that
guarantees the existence of a finite nonzero asymptotic limit for total spending.

Since we have closed-form expressions for equilibrium strategies, we can take partial
derivatives of B and Q with respect to each parameter given our assumptions on u(·).
However, these are highly complex objects and cannot be signed by inspection, so we instead
solve for boolean assertions on the sign of the derivative using the cylindrical algebraic
decomposition algorithm.4 We additionally verify these computer-algebraic conclusions
via numerical computation across a fine grid of the parameter space, coming to identical
conclusions. A statement derived with this method is henceforth referred to as a “Fact.”
4 In particular, we use the Mathematica function Reduce[]. In each case, the system evaluates to either TRUE or

FALSE for the relevant parameter space.
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We begin by stating results that do not pertain to social structure and hold even in the
absence of peer effects.

Fact 1. Candidate office motivations, the voter’s valuation for the public good, and the
quality of candidate information have the following effects on total transfers and inequality,
with (+) denoting positive, (−) denoting negative, and (0) denoting null.

office motivation public good information
α γ ν

Total transfers B + − +

Inequality Q 0 0 +

Greater office motivations encourage candidates to divert public resources towards private
provision, while a stronger value for the public good reduces this incentive for diversion.
Moreover, as better information increases the marginal value of targeting any voter, it
incentivizes spending and raises the candidate’s sensitivity to other incentives.

Inequality, on the other hand, is consistently unaffected by changes in these parameters,
as candidate beliefs about optimal allocation of transfers across groups do not change in
their office motivation or the voters’ value for the public good.

With regard to social structure, the difference in the expected number of connections of
members of each group shifts candidates’ targeting incentives in a way that reverberates
across the network. For the following results, we assume without loss of generality that
group 1 is the minority, s < 1

2 , so that fractionalization is increasing in s.

Fact 2. Fractionalization, segregation, and in-group connection probabilities have the
following effects on total transfers and inequality, with (+) denoting positive and (−)

denoting negative.

fractionalization segregation in-group ties
s δ−1 ρ

Total transfers B − − +

Inequality Q − + +

As society becomes less segregated and less fractionalized (i.e., more dominated by a
single large majority), candidates face an incentive to divert expenditure. To see why this
is the case, recall that with δ < 1, relabeling a single voter from the majority to the minority
group results in a decrease in the average degree and thus total influence of members of
the majority group, which is now marginally smaller, but also results in a corresponding
increase in influence for members of the now-larger minority group. At the same time, the
total weight of all intergroup or “weak” ties n2s(1−s)δρ increases as the group sizes become
more even.
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There are thus four basic mechanisms that connect an increase in the majority group’s
share to candidate incentives. First, transfers to the majority group increase in marginal
value, which encourages greater expenditure. Second, the opposite holds true for the
minority group. Third, both of these effects are attenuated by their mirror opposite: the
penalty incurred for diversion of public goods is increased. Finally, the effect of transfers to
any voter has an increased impact on spillovers to the other group. It is the first effect that
dominates regardless of the actual level of homophily, implying that the social structure
that most favors private transfers is one in which society consists only of a single group.

A similar logic drives the impact of segregation and density on total spending. Holding
the baseline connection probability ρ constant, an increase in δ (lower segregation) implies
an increase in all cross-group tie probabilities. As a consequence, the net influence of every
voter on all others is greater, which directly incentivizes more spending—although this
effect is again attenuated by γ. Similarly, for any amount of segregation, an increase in ρ

makes the entire network more dense in expectation and therefore results in increased social
influence and hence more expenditure.

While, as just discussed, the fact that all voters are interconnected implies that changes
in social structure tend to increase or decrease the value of all voters at once, these effects
are not necessarily symmetric across groups. In general, members of the majority group are
always more valuable, since their higher expected degrees are associated with a greater total
influence per voter. Any change in parameters that results in a relatively higher marginal
gain for minority members than for majority members will then lead to a reduction in
inequality.

Reductions in segregation are associated with a greater total transfers, but also reduce
inequality. While the value of a transfer to any voter increases as the proportion of cross-
group ties goes up, this benefit accrues disproportionately to members of the minority
group. This is because each new cross-group tie improves minority voters’ ability to influence
members of the larger group, which in turn brings greater electoral returns. While majorities
similarly benefit from the ability to influence minorities, the smaller size of the minority
means that these corresponding benefits are smaller.

Fractionalization (i.e., increases in the size of the minority group) also benefit voters in
the minority group and reduce inequality. First, a growing minority group rises the relative
value of each of its members due to the direct effect of raising their expected degrees. At the
same time, more equal group sizes increase the number of cross-group ties, simultaneously
allowing minority members greater influence over the shrinking majority.

Unlike these two parameters, increases in the baseline connection probability ρ accentuate
inequality, benefiting majority members to a greater extent. This is because, holding
δ constant, an increase of ∆ρ has a ∆ impact on within group ties (which are more
numerous among the majority), but only a ∆δ effect on cross-group ties, which bear the
most importance for the minority. As a consequence, dense networks will tend to see the
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most expenditure, but also the greatest inequality in targeted transfers, as overall density
tends to benefit members of the majority more.

IV. Heterogeneous Information

In the preceding section, we consider the case where candidates possess no inherent
incentive for transfers to either group beyond its size. In this section, we study how
the mechanisms highlighted so far interact with the information available to candidates
regarding voters in each group.

Specifically, we allow the precision of a candidate’s information to vary systematically
across voters. In particular, we focus on variation in information that arises due to
systematic differences between the two groups. For instance, if the effect of group identity
on voting is stronger in one party than another, candidates may view those associated with
the “weaker” group as more likely to be swing voters, as their vote choice exhibits higher
variance conditional on their group label. Intuitively, the first-order effect of this variation
is to reduce the value of transfers to members of the less predictable group. Nevertheless,
it is unclear a priori how this affects the comparative statics derived in the baseline model,
as the reduced value of members of this group also reduces the significance of all flow-on
effects that go through them in the network.

There are two distinct incentives for candidates that compete. First, candidates value
members of the majority more highly due to their greater ability to influence. However,
voters in the more predictable group are now both more attractive to target individually
and have a more reliable impact on their neighbors. How does social structure modulate
the relative importance of these two channels?

A. Equilibrium with Heterogeneous Information

We begin from the setup of the baseline model, with the distinction that the information
held by a candidate about voter i’s preferences is allowed to vary. In particular, voter i’s net
preference for the candidate, εi, is now drawn from one of two uniform distributions with
density parameter θi ∈ {

¯
θ(n), θ̄(n)} with θ̄(n) >

¯
θ(n) for any graph of size n. We can think

of θi as voter i’s private type, which is unknown to candidates. While the candidate does
not know which distribution voter i’s net preference was drawn from, they receive signals
about each voter’s type mi ∈ {

¯
θ(n), θ̄(n)} such that mi = θi with a probability greater

than half that depends on the voter. In other words, the candidate receives informative
signals about the preferences of voters and those signals may be more precise for some
voters than for others. After receiving signals mk = (m1k, . . . ,mnk), each candidate k

forms posterior beliefs µk = (µ1k, . . . , µnk) where µik := Pr(θi =
¯
θ(n)|mik) and distribute

payments according to expected types θ̂ik := Eµk [θi].
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With uncertainty over voter types, we can write candidate k’s problem as

max
bk

αk
∑
i∈V

Eµk [ϕik(bk, b−k)]− bk · 1⊤(P2)

subject to bik ≥ 0 for all i.

Exactly as before, each voter’s probability of voting for candidate 1 is a function of all other
vote probabilities. Unlike the baseline model, however, candidates maximize an expected
utility that now depends on their posterior beliefs of voter types. In particular, we need
to characterize the candidates’ expected vote share conditional on their signals. Letting
ϕi = ϕi1(b) as before without loss of generality, these can be expressed for candidate 1 as

Eµ1 [ϕi] =
1

2
+ Eµ1 [θi]Ũi1 +

∑
j∈Ti(G)

wij(2Eµ1 [θiϕj ]− Eµ1 [θi])

where Ũi1 := (−1)xi−1 + u(bi1) − Eµ1 [u(bi2)] + γ
∑

m(Eµ1 [bm2] − bm1), and analogously for
candidate 2. Additionally, note that Eµk [θi] = θ̄ − µik(θ̄ −

¯
θ); this can be thought of as a

candidate k’s net information about voter i, taking into account both first-order uncertainty
about i’s vote choice and second-order uncertainty over her type. To solve for equilibrium
transfers, we first make the following assumption.

Assumption 5. Denote by µmax := maxik µik and µmin := minik µik the largest and
smallest posteriors, respectively, with θ̂max and θ̂min as the corresponding expectations.
Then, for any sequence of graphs Gn, let there be corresponding sequences of largest
and smallest posteriors, (µmax)n and (µmin)n, such that there exists a constant rate
of information decay, χ := 1

(θ̂max)(n)n
∈ (2,∞), and a constant relative informational

disadvantage for the minimum voter, ν := (θ̂min)(n)

(θ̂max)(n)
∈ (0, 1), for each element graph G(n).

This assumption ensures two things. First, the constant rate of information decay
guarantees that the maximum quality of information for every element graph is low enough
so that the solution is always well-defined. Second, the constant relative informational
disadvantage to the minimum voter serves to bound the divergence in information quality
between any two voters across element graphs.

Whereas ν in the baseline model reflects overall quality of candidate information about all
voters, ν in this section reflects the average quality of information over the least predictable
voter. On the other hand, the new parameter χ governs (the inverse of) the average quality
of information over the most predictable voter.

Given this new assumption, we can state the following.

Lemma 2. limn→∞ Eµk [θiϕj ] =
(
¯
θ − µik

(
θ̄ −

¯
θ
))

Eµk [ϕj ] for any i, j ∈ V and any µk.

This lemma enables us to disentangle the effect of changes in a particular voter’s type
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from the influence it has on the vote probability of another voter as the network grows
sufficiently large. In particular, a voter i’s type θi and a voter j’s vote probability ϕj

become asymptotically independent. Using this fact, we can write the optimality condition
in a similar way as before,

(J [u]− Γ)⊤ ·
(
I − 2ΘkÃ

)−1
· 1 = Θ−1

k · (1− λ∗)

αk
,

where Θk := θ̄I − (θ̄ −
¯
θ)Mk and Mk is an n × n diagonal matrix with posteriors µik as

nonzero elements, and the remaining objects are as defined in the baseline. From this, we
can express equilibrium transfers by

bik =
[
u′
]−1

(
1

cik(w,
¯
θ, θ̄;G,µk)

[
γCk(w,

¯
θ, θ̄;G,µk) +

1

αθ̂ik

])
,

where the only difference from the previous section is that payments depend on beliefs
about voter i’s type, θ̂ik := Eµk [θi], which also influences the centrality measure cik. Now,
cik is the ith element of ck = (I − 2ΘkÃ)−1 · 1 with Ck(·) :=

∑
i cik. Since one candidate’s

transfers do not affect the optimal transfer profile for the other, both candidates will act
according to their own beliefs in equilibrium. Hence, to study the impact of parameters on
equilibrium play, it is sufficient to consider a single candidate with arbitrary posteriors that
satisfy Assumption 5.

B. Heterogeneous Information Results

To recover comparative statics with heterogeneous information, we retain the assumption
of logarithmic voter utility over transfers. We also now allow for group 1 to be any size
s ∈ (0, 1) to focus on informational disparities. To ensure that Assumption 2 holds, we
impose that voters of the same group have the same expected type from the perspective
of the candidate such that, for each random graph G(n), θ̂(n)1 = 1

χn for χ ∈ (2,∞) and
θ̂
(n)
2 = νθ̂

(n)
1 for ν ∈ (0, 1) where 1 and 2 refer to voter groups. This setup allows us to focus

on the effect of relative changes in the quality of information about individuals in one group
over the other. In particular, ν < 1 implies without loss of generality that group 1 has
superior information on average, with ν = 1 implying equal quality. Note that as ν → 1,
the total information available to the candidate across the whole network also increases.

Proposition 2. Consider a sequence of random graphs Gn drawn from a stochastic
block model. Under the assumptions of Proposition 1 and Assumption 5, expected voter
centralities given candidate k’s information can be approximated by a function of parameters
ĉ
(n)
k (s, δ, ν, ρ, χ) for each graph G(n). These approximations become arbitrarily close to the

true centralities c in any realization as n → ∞. Then, centralities for voters in group 1
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and 2 are asymptotically equivalent to, respectively,

c1 ∼
χ2 − 4ρχ(1− s) (ν − δ)

χ2 + 4ρ (4ρνs(1− s) (1− δ2)− χ (ν + s (1 + ν)))

c2 ∼
χ2 − 4ρχs(1− δν)

χ2 + 4ρ (4ρνs(1− s) (1− δ2)− χ(ν + s(1 + ν)))
,

As in the baseline model, equilibrium strategies may differ from those implied by these
expressions in any particular network realization; however, Proposition 1 ensures that this
occurs with vanishing probability as the number of voters grows sufficiently large.

Disconnected Model.—It is instructive to briefly explore the disconnected case with
heterogeneous information. Candidate strategies straightforwardly reduce to

(6) bik =
[
u′
]−1

(
γα · tr(Θk) + 1

αθ̂ik

)

where tr(Θk) =
∑

i θ̂ik denotes the trace of Θk.
Although this expression is almost identical to the disconnected solution to the baseline

model in expression (5), there is one important difference: the total information Θk now
appears in the numerator instead of simply n. The immediate consequence of this is that,
while an increase in office motivation is still associated with greater spending, the relative
impact of α and γ on group-level transfers is now contingent on the informational ratio of
each voter, θ̂ik/tr(Θk). This fact has important consequences for redistributive politics even
in the presence of network effects, as the following section demonstrates.

In the absence of peer effects, we can recover total transfers and inequality as

B =
α((αγ + χ)ν + s(1− ν)χ)

(αγ + χ)(αγν + χ)
and Q =

((1− ν)χ)2

4((2αγ + χ)ν + χ)2
,

respectively. As in the baseline model, neither density nor segregation has an impact on
transfers, since these govern relationships between voters. However, social structure still
plays a role through group share. The imbalance in the value of transfers made to members
of group 1 implies that spending will also increase as a greater proportion of the population
belongs to this group. The magnitude of this effect is also increasing in the extent of
informational heterogeneity (1 − ν)χ, as spending becomes more sensitive to changes in
group composition the more pronounced the imbalance.

A second consequence of introducing heterogeneity in information is that members of
the more predictable group now receive systematically higher transfers, in contrast to the
disconnected case of the baseline model where inequality is constant in parameters. This
basic mechanism is unsurprising; however, it is noteworthy that this channel also generates
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a new connection between inequality and the value of the public good, reflected in α and
γ. Specifically, as the public good becomes more valuable to voters (increasing γ) or
less valuable to the candidate (increasing α), the informational advantage of group 1 is
attenuated.

The reason for this difference lies in the varying trade-off faced by increasingly office-
motivated candidates between maximizing the value of transfers to each individual and
minimizing the total cost to all voters of diverting resources, exemplified in expressions (5)
and (6). Hence, as γ increases and the penalty to the candidate for offering transfers grows
larger, the equilibrium transfer to members of the predictable group are reduced at a faster
rate, reducing inequality. Greater certainty over these voters’ preferences yields greater
marginal returns from diverting resources away from them.

Conversely, increases in office motivation α result in greater transfers to members of the
more predictable group, which in turn exacerbates inequality. Because the candidate has
a stronger incentive to make transfers in general, the benefits accrue disproportionately to
those voters who are deemed most likely to change their votes.

Connected Model.—We now return to the connected model with peer effects. It is
no longer useful to explore the effect of parameters on total transfers and inequality
using partial derivatives, as the added complexity render the conditions analytically
uninformative. Nonetheless, we can characterize sharp conditions in which group 1 voters
receive greater transfers than those in group 2. This allows us to understand the effects of
social structure on group-level biases in this setting before turning to a numerical analysis
of total transfers.

This set of results is derived by solving for boolean assertions using the cylindrical
algebraic decomposition algorithm, as previously described. A statement recovered in this
way continues to be called a “Fact.”

Fact 3. Group 1 voters receive larger transfers than those in group 2 if the more predictable
group is sufficiently large, s > s∗ := ν−δ

(1−δ)(1+ν) or segregation is sufficiently low, δ ≥ ν.

A key difference between the baseline model and the case of heterogeneous information
relates to the role of social structure. In the baseline model, transfers decrease in both
fractionalization and segregation. Now, the effect of social structure is conditional on
its relationship to the information structure. In general, the equilibrium transfer profile
depends on the balance of two competing effects: an information effect determined by ν

and χ, which favors the more predictable group, and a network effect governed by δ and ρ,
which favors the larger and more connected group.

The balance of these two effects is strongly related to group share, which affects both
the size of the network effect and the proportion of more valuable voters on the network.
When group 1 is in the majority, we observe the same pattern as before: fractionalization
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decreases expenditure. This is because the information and network effects point in the
same direction, with increases in the share of more valuable group 1 members encouraging
greater spending.

When the more predictable group 1 is small—more precisely, when s < s∗—these two
mechanisms push candidates in opposite directions. An increase in the more predictable
group’s share leads to a higher proportion of high-value voters, but also reduces the size of
the more connected majority group as in the baseline model. The threshold at which this
happens depends on both segregation δ and information asymmetry ν. The more equal the
two groups are (high ν), the higher this threshold is, as the reduced informational advantage
to group 1 results in a more dominant network effect.

Conversely, low segregation (high δ) tends to push the threshold down, with the network
effect becoming weaker as the two groups become more connected, resulting in the candidate
favoring voters in the predictable group for a wider range of group fractionalization. This
same logic implies that group 1 will always be favored when δ exceeds ν, as this guarantees
that the information effect will always dominate.

Moreover, the information effect may continue to dominate the network effect even if the
size of group 1 is small s ≤ s∗ or segregation is high δ < ν.

Fact 4. Assume that the conditions of Fact 3 do not hold. Then, group 1 voters can still
receive larger transfers than those in group 2 when candidate office motivation is sufficiently
low, α < α∗(s, δ, ρ, γ, ν, χ).5 In particular, this occurs when

(i) information disparities are sufficiently large, ν ≤ 1
2 ;

(ii) segregation is sufficiently low, δ ≥ 2ν − 1;

(iii) candidates are sufficiently ill-informed in general, χ ≥ χ∗ := 2(ν(1−s(2−δν))−δ(1−s))
1−ν ;

(iv) the more predictable group is sufficiently large, s ≥ s∗∗ := 1+δ−2ν
δ(1+ν2)−2ν

; or

(v) in-group connection probabilities are sufficiently weak, ρ < ρ∗ := χ
χ∗ .

Fact 4 corresponds to network and information effects that are in close opposition. With
s ≤ s∗ and δ < ν, group 1 is sufficiently small not to benefit from greater network spillovers,
yet possesses a large enough informational advantage that it could in principle overcome this.
Unlike in the baseline model, where α simply scales equilibrium transfers, the introduction
of this trade off now leads to distributional consequences for office motivation. While the
information and network effects are in opposition, they differ in their returns to scale.
Although shifts in θ affect a candidate’s predictions regarding network spillovers, their
primary effect is to shift the ex-ante value of voters in each group, which impacts their
electoral returns linearly.

5 The full expression for α∗(·) is omitted due to its size and that it does not provide additional clarity. It is available
for review in our replication materials.
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On the other hand, network spillovers operate exponentially, with marginal increases to
the probability of a voter’s support affecting everyone else, which in turn further influences
the original voter. As candidates become more office motivated, they are willing to divert
more of the public good to recover electoral support, which magnifies these exponential gains
from the network effect. When α > α∗, therefore, candidates are willing to extend enough
transfers that the expected returns from more predictable voters in group 1 must always be
less than those from more connected group 2 voters, regardless of the informational balance.
Notably, this threshold is a function of all of the remaining parameters, as these determine
the point at which exponential increases from network spillovers are sufficiently strong as
to outweigh the additional gains group 1 voters offer from better information.

When α < α∗, there exist parameter combinations such that the information effect can
outweigh the network effect. First, pertaining to conditions (i) and (ii) of Fact 4, the
information effect may prevail when group 1’s information advantage is large enough and
segregation is low enough. The more segregated a society, the greater the peer effects,
reducing the value of greater predictability. Specifically, if the amount of segregation δ

does not exceed the threshold value of 2ν − 1, then the disadvantage of being a minority
group is insufficient to outweigh the informational superiority of group 1. Consequently, if
the magnitude of the informational asymmetry is more than twofold, it is impossible for
segregation to be so extreme as to outweigh the information effect.

Another way group 1 voters may receive higher transfers is a decrease in the overall
information available to the candidate, corresponding to on condition (iii) of the proposition:
χ ≥ χ∗ holding ν constant. This result is somewhat counterintuitive. The benefit of
additional information accrues disproportionately to group 1 voters, since ν attenuates the
information available to group 2. Due to the concavity of u(·), the transfer profile tends
towards equality as the total information on the graph increases. Notably, the threshold
additionally depends on δ and s, since the benefit to group 2 voters of information is
mediated by their size and connection to the smaller group.

Pertaining to condition (iv), a lower threshold s∗∗ exists in addition to the threshold
s∗. Like s∗, this lower threshold depends on ν and δ, and determines the group size
at which the information effect and network effect offset one another. However, unlike
the higher threshold, which determines the point at which this occurs for highly office-
motivated candidates for whom the exponential network spillovers outweigh the benefit of
more information, s∗∗ determines the point at which these equalize for candidates that place
comparable weight on electoral gains and public goods provision. Notably, α∗ also depends
on s, so that three possibilities exist: the two effects equalize at either (i) s∗∗ when α is
small; (ii) some s′ ∈ (s∗∗, s∗) such that α = α∗(s′; ·) when α is intermediate; or (iii) s∗ when
α is large.

The final condition (v) is when the network is highly segregated and candidates have
good information overall, but a significant informational asymmetry persists. In this case,
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Figure 3. Effect of group share on total transfers under varying information asymmetry

both effects are quite weak: the network is weakly connected, but the overall information
available is high, attenuating group 1’s informational advantage given the tendency towards
equality as candidates become highly informed. For the information effect to win out, group
2’s size advantage must not be too large. Moreover, both groups must be weakly connected
within themselves, not only to one another. In fact, this threshold corresponds precisely to
the fraction of information held by the candidate relative to the threshold amount, χ

χ∗ .
Together, Facts 3 and 4 provide the complete set of conditions for more predictable group

1 voters to receive higher transfers. While these results provide a precise characterization
of the relative transfers afforded to members of each group, they do not directly relate to
the candidate’s total expenditure. Indeed, as noted above, the expression for B yields
intractable derivatives. Nevertheless, the thresholds discussed closely relate to general
patterns in expenditure, which we now represent graphically.

Figure 3 shows the impact of varying ν and δ, which directly modulate the relative
strength of the information and network effects on the relationship between group size and
total transfers. When ν is small relative to δ, the information effect dominates, leading to
total expenditure being dominated almost entirely by the share of group 1. Intuitively, as
more of the more valuable voters are added to the network, the candidate is driven to spend
more. Notably, the growth in expenditure increases to exponential as group 1 moves into
the majority, as both effects now work in concert to drive up spending.

When ν exceeds the 1
2(1 + δ) threshold, however, increases in the size of group 1 can

decrease spending. This occurs as a result of the shift from targeting group 2 to group
1 voters. In the baseline, when s is very small, the network advantage for group 2 is
overwhelming and, as s increases so that group 1 and 2 converge in size, the candidate
extends less transfers in total. This effect is still present in the heterogeneous case, however,
spending will now also respond to informational advantages. Consequently, the size of group
1 at which total transfers are minimal is interior but below the halfway point.
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Figure 4. Effect of group share on total transfers under varying office motivation

On the other hand, Figure 4 illustrates the impact of office motivation holding ν and δ

constant. Here, the thresholds s∗ and s∗∗ are marked to reflect the cutpoints at which the
candidate shifts from targeting group 2 voters to those in group 1. While this yields the
same general pattern as noted above—the network effect dominates for small s until the two
equalize at either s∗∗, s∗, or some s′ ∈ (s∗∗, s∗), depending on whether office motivations
are small, large, or intermediate—candidate office motivations also flatten the curve. This
is rooted in the logic of exponential returns to scale from network effects already discussed:
sufficiently office-motivated candidates are driven to extend larger individual transfers in
equilibrium, increasing the effect of peer influence on vote probabilities and making total
transfers relatively unresponsive to changes in group share.

V. Conclusion

In this article, we find that the incorporation of peer effects raises the marginal value
of transfers to central voters, resulting in a diversion of public resources that may greatly
exceed the amount voters would otherwise prefer. In our baseline that centers on the role
of network effects, candidates prioritize voters in the majority group and extend the fewest
transfers when groups are equipopulous and segregated.

When we extend the model to consider candidates with heterogeneous information about
the electorate, information can overcome the tyranny of the majority caused by the network
effects. In particular, this will occur when groups are integrated, as greater inter-group
connections diminishes the extent to which voters in the less predictable group can be
advantaged in their ability to influence others, causing candidates to prefer more predictable
voters even if they are in the minority group. This may also occur if candidates are low in
their office motivations, as a reduced incentive to extend transfers causes the candidates to
be more selective when taking resources away from the public good. This will especially be
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true if peer relations are weak or the overall quality of information about voters is poor, in
which case candidates may prefer to target minority voters.

These results suggest several new insights. First, intensive targeted redistribution will
be more likely to occur in social contexts that are maximally homogeneous, with both
minimum fractionalization (i.e., almost all voters belonging to one group) and low levels
of social segregation. This has broad implications on the way in which we might expect
political institutions to vary across different societies. In contexts where group boundaries
are hard and salient, targeted redistributional strategies are inhibited by the lack of
positive cross-group externalities, resulting in competition centering on the promise of
public good provision. In contrast, politicians have a greater incentive to redistribute
in highly homogeneous societies with weak group divisions or a single dominant group,
leading to a greater focus on targeted redistribution. Notably, this mechanism sheds
some light on the contradictory findings regarding the effect of diversity on public goods
provision in localities of varying size (Schaeffer, 2013; Singh and Vom Hau, 2016): although
small societies can produce either relation, our results suggest that diversity favors public
goods provision in large societies because it reduces the ability of politicians to exploit peer
effects for electoral advantage.

Second, members of the majority group are likely to benefit disproportionately from
private provision, especially when candidates are well-informed about voters. In the absence
of strong in-group preferences or informational advantages, this will tend to occur regardless
of the group affiliation of those dispensing resources and may lead to targeting voters that
ex-ante prefer the opposition. This occurs for the same reason transfers become more
targeted as society becomes more homogeneous: the primary benefit to targeting individuals
is the potential to exploit peer effects and sway many voters simultaneously. Because social
connections are more numerous in larger groups, we expect minorities to be systematically
disadvantaged the smaller and more isolated they become. Even candidates belonging to
their own group face a strong incentive to target the more electorally profitable majority
group and provide fewer public goods than otherwise.

Third, information affects the role of social structure in redistributive politics and vice
versa. When one group is more predictable than the other, this creates an incentive for
candidates to target voters whose preferences they know more about. When the group
associated with more information is also relatively small, the effect of information is in
tension with the effect of the network, which favors voters in the larger group as a result of
their greater ability to influence the votes of others. Our model suggests that the information
effect dominates when either the information imbalance is larger than the level of cross-group
integration, or when candidates are weakly office motivated and poorly informed relative to
the strength of peer effects.

This is particularly notable with regard to candidates who themselves belong to political
minorities and hence possess more certain information about the preferences of in-group
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members. For instance, this dilemma may arise for members of fringe parties catering
to a tightly-knit economic or ideological community, or ethnic minority candidates
seeking national representation. Our model suggests that such candidates will engage in
favoritism—i.e., promising transfers to members of their own group—only if their group is
strongly integrated into the majority group or if their motivation to hold office is not very
strong. First, as the minority group becomes more segregated from the majority group,
the reduced ability of the candidate to sway many voters simultaneously through transfers
to minorities causes them to allocate more to voters in the majority group instead. Second,
as minority candidates care more about holding office, they will instead seek to induce
members of the other, larger group with targeted transfers, driven by the allure of social
spillovers despite knowing less about individual voters.

Finally, our results raise several questions about social structure and redistributive
politics. Our setting explores politicians that are endowed with heterogeneous information
about voters; however, how might electoral strategies change if learning is costly?
Specifically, would the role of social structure change if a candidate’s cost of learning
about a voter depends on their positions in the social network? Moreover, we take network
formation as exogenous to the strategic interaction at hand. How might voters choose
their friends if they were aware that it might impact their subsequent welfare? These are
interesting questions for future research.

VI. Appendix

In the current section, we begin by presenting several additional results that facilitate
our analysis, alongside their corresponding proofs. Thereafter, we present the proofs for
statements presented in the main text. Refer to the accompanying replication materials for
additional details.

We begin by stating a concentration inequality for sums of independent random matrices
with bounded operator norms that forms the basis of our asymptotic bounds. Analogous to
Chernoff bounds for scalar-valued random variables, this bound exploits the sub-additivity
of matrix cumulant-generating functions together with the Laplace transform method to
guarantee that the sum is not too far from its expectation. The key idea in our context is
that, despite the presence of general interdependencies in the network, the independence of
each individual tie under the stochastic block model guarantees that the adjacency matrix
can be decomposed into independent random matrices.

Lemma A1 (Matrix Bernstein Inequality). Let X1, . . . ,Xm be independent random n×n

Hermitian matrices and set M > 0 : ||Xi − E(Xi)||2 ≤ M for all i = 1, . . . ,m. Then for
any a > 0,

Pr(||X − E(X)||2 > a) ≤ 2n exp

(
− a2

2v2 + 2Ma/3

)
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where X =
∑m

i=1Xi and v2 = ||
∑m

i=1V(Xi)||.

This is the standard Bernstein Inequality for matrices. See, for example, Theorem 5 in
Chung and Radcliffe (2011) for the proof.

Next, we derive a Chernoff bound for sums of weighted Bernoulli random variables. In
addition to individual connections, it is also necessary to provide bounds on the degree of
each voter, which is precisely such a sum. Hence, by assuming that all weights are bounded
above, we are able to calculate limits on the probability of deviation of voter degrees from
their expected degree.

Lemma A2 (Chernoff Bound for Weighted Bernoulli Sums). Let X1, . . . , Xm be
independent random variables distributed Xi ∼ wi · Bernoulli(pi) and define ∆ :=

∑
iwipi

and ω := maxiwi. Then for any 0 < t < 1,

Pr(|X −∆| > t∆) ≤ 2 exp

(
−∆

3ω
(t2 − 3)

)
where X =

∑m
i=1Xi.

Proof. We proceed by bounding the moment generation function (MGF) of each Xi. First,
denote by MY (s) = E[esY ] the MGF of Y . Then,

MXi(s) = 1 + pi(e
swi − 1) ≤ epi(e

swi−1)

and hence

MX(s) =
∏
i

MXi(s) ≤ e∆(esω−1).

Next, from Markov’s inequality we have

Pr(X ≥ (1 + t)∆) ≤ e∆(esω−1)

es(1+t)∆

=

(
ωe1+t−ω

(1 + t)1+t

)∆
ω

,

where we set s = 1
ω ln

(
1+t
ω

)
to minimize the bound. Then taking the logarithm of the
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right-hand side gives

ln

((
ωe1+t−ω

(1 + t)1+t

)∆
ω

)
=

∆

ω
(1 + t− ω + ln(ω)− (1 + t) ln(1 + t))

≤ ∆

ω

(
1 + t− 2t(1 + t)

2 + t

)
= −∆

ω

(
(t− 2)(t+ 1)

2 + t

)
,

because ln(1 + x) ≥ x
1+x/2 for x > 0. Hence, we can write

(A1) Pr(X −∆ ≥ t∆) ≤ exp

(
−∆

ω

(
(t− 2)(t+ 1)

2 + t

))
.

Moreover, an analogous argument with s = 1
ω ln

(
1−t
ω

)
and applying ln(1− x) ≥ x2

2 − x for
0 < x < 1 yields the lower tail bound of

(A2) Pr(X −∆ ≤ −t∆) ≤ exp

(
− ∆

2ω

(
t2 − 2

))
.

Putting together equations (A1) and (A2) yields, for 0 < t < 1,

Pr(|X −∆| ≥ t∆) = Pr(X −∆ ≥ t∆) + Pr(X −∆ ≤ −t∆)

≤ exp

(
−∆

ω

(
(t− 2)(t+ 1)

2 + t

))
+ exp

(
− ∆

2ω

(
t2 − 2

))
≤ exp

(
−∆

ω

(
t2 − 2− t

3

))
+ exp

(
− ∆

3ω

(
t2 − 2

))
≤ exp

(
− ∆

3ω

(
t2 − 3

))
+ exp

(
− ∆

3ω

(
t2 − 2

))
≤ 2 exp

(
− ∆

3ω

(
t2 − 3

))
.

□

Next, we present a theorem that extends Theorem 2 from Chung and Radcliffe (2011),
which applies only to unweighted graphs, to symmetrically weighted graphs. Theorem A1
allows us to place tight bounds on the deviation of the realized induced adjacency matrix
from its expected counterpart, drawing on the concentration bounds just derived.

Theorem A1. Let G be an undirected random graph such that all edge formation
probabilities are jointly independent. Denote by A the adjacency matrix and Ã the
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induced adjacency matrix by Definition 1. Let D̃ be the diagonal degree matrix such
that {D̃}ii =

∑
j Ãij and {D̃}i ̸=j = 0. Moreover, let L̃ = I − D̃−1/2ÃD̃−1/2 denote

the corresponding (normalized) Laplacian of G, wmax := maxi,j wij be the largest weight,
wmin := mini,j wij the smallest weight, and dmin := mini

∑
j∈V wijpij the smallest expected

degree. Let ¯̃A, ¯̃D, and ¯̃L denote the expected equivalents.
Then for any ψ > 0, there exists a k(ψ) > 0 such that

Pr

||L̃− ¯̃L|| ≤ 4

√
3wmax ln(4n/ψ)

dmin

 ≥ 1− ψ

if Assumption 3 holds.

Proof. By the triangle inequality, for any matrix Z,

||L̃− ¯̃L|| ≤ ||Z − ¯̃L||+ ||L̃−Z||.

First, we bound ||Z − ¯̃L||. In particular, let Z = I − ¯̃D−1/2Ã ¯̃D−1/2. Then, since the
degree matrices are diagonal, we have Z − ¯̃L = ¯̃D−1/2(Ã− ¯̃A) ¯̃D−1/2. Denoting by Y ij the
matrix that is equal to 1 in the i, jth and j, ith positions and 0 elsewhere, we can use the
symmetry of weights to write the i, jth entry of Z − L̄ as

Xij =
¯̃D−1/2 (wij(Aij − pij)Y ij)

¯̃D−1/2 =
wij(Aij − pij)√

d̄id̄j

Y ij .

where we denote d̄i =
∑

j∈V wijpij as the expected weighted degree of node i.
We know Z − L̄ =

∑
Xij , so Lemma A1 applies. Since E(Aij) = pij , we have that

E(Xij) = 0, so that v2 = ||
∑

E(X2
ij)||. Hence each Xij is bounded above by ∥Xij∥ ≤ wmax

dmin

and we have

E(X2
ij) =

[
d̄id̄j

]−1
w2
ijpij(1− pij)(Y ii + Y jj)
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and then

v2 =

∥∥∥∥∥∥
n∑
i=1

n∑
j=1

w2
ij

d̄id̄j
pij(1− pij)Y ii

∥∥∥∥∥∥
= max

i

 n∑
j=1

w2
ij

d̄id̄j
pij(1− pij)


≤ max

i

wmax
dmin

n∑
j=1

wijpij

d̄i


=
wmax
dmin

Denote a =
√

3wmax ln(4n/ψ)
dmin

and dmin so that a < 1. In particular, we must have dmin >
3wmax(ln(4) + ln(n) − ln(ψ)), so that if k ≥ 3wmax(1 + ln(4/ψ)), dmin ≥ kwmax ln(n)

guarantees the result, which holds by Assumption 3. Then, by Lemma A1,

Pr(∥Z − ¯̃L∥ > a) ≤ 2n exp

(
−

3wmax ln(4n/ψ)
dmin

2wmax
dmin

(1 + a/3)

)

= 2n exp

(
− 3 ln(4n/ψ)

2 (1 + a/3)

)
≤ 2n exp (− ln(4n/ψ))

=
ψ

2
.

Now for the second term, we have

∥∥∥ ¯̃D−1/2D̃1/2 − I
∥∥∥
2
= max

i

∣∣∣∣∣
√
di
d̄i

− 1

∣∣∣∣∣ = ∥∥∥ ¯̃D−1/2D̃1/2 − I
∥∥∥
2
= max

i

∣∣∣∣∣
√
di/n

d̄i/n
− 1

∣∣∣∣∣ .
Here, di is a sum of Bernoulli random variables that are bounded between 0 and wmax.
Then, by Lemma A2, we have that for any 0 < t < 1,

Pr(|di − d̄i| > td̄i) ≤ 2 exp

(
− d̄i(t

2 − 3)

3wmax

)
.

In particular, let t =
√

3wmax ln(4n/(ψ exp (dmin/wmax)))
dmin

= a − 1√
wmax

. We have t < a < 1

provided that wmax > 1
a2

or equivalently wmax >
√

dmin
3 ln(4n/ψ) , which holds by Assumption
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3. For all i, we then obtain

(A3) Pr(|di − d̄i| > td̄i) ≤
ψ

2n
.

Now, to bound

∥∥∥ ¯̃D−1/2D̃1/2 − I
∥∥∥
2
= max

i

∣∣∣∣∣
√
di
d̄i

− 1

∣∣∣∣∣ ,
we can conclude by inequality (A3) that Pr

(∣∣di/d̄i − 1
∣∣ > t

)
≤ ψ

2 and hence with probability
at least 1− ψ

2 ,

∥∥∥ ¯̃D−1/2D̃1/2 − I
∥∥∥
2
<

√
3wmax ln (4n/ (ψ exp (dmin/wmax)))

dmin
.

Then, for the second term, we have

∥L̃−Z∥ = ∥I − D̃−1/2ÃD̃−1/2 − I + ¯̃D−1/2Ã ¯̃D−1/2∥

= ∥(I − L̃) ¯̃D−1/2D̃1/2D̃−1/2ÃD̃−1/2D̃1/2 ¯̃D−1/2∥

= ∥(I − L̃) ¯̃D−1/2D̃1/2(I −L)D̃1/2 ¯̃D−1/2∥

= ∥( ¯̃D−1/2D̃1/2 − I)(I − L̃)D̃1/2 ¯̃D−1/2 + (I −L)(I − D̃1/2 ¯̃D−1/2)∥

≤ ∥ ¯̃D−1/2D̃1/2 − I∥∥D̃1/2 ¯̃D−1/2∥+ ∥I − D̃1/2 ¯̃D−1/2∥

≤ t2 + 2t

because ∥I − L∥2 ≤ 1 from the fact that ∥L∥2 ≤ 2 (Chung and Graham, 1997). Finally,
putting these together, we can conclude that

||L̃− ¯̃L|| ≤ ||Z − ¯̃L||+ ||L̃−Z||

≤ 3a+ a2 +
1

wmax
− 2 + 2a

√
wmax

≤ 4a+
1

√
wmax

(
1

√
wmax

− 2

)
= 4a+

1− 2
√
wmax

wmax

≤ 4a

= 4

√
3wmax ln(4n/ψ)

dmin
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because a < 1 and wmax ≥ 1/4. □

With these preliminaries established, we are now ready to state the proofs of results
presented in the main text.

Proof of Lemma 1. Let Gn be a sequence of random graphs over n vertices, and denote
by d(n)min the smallest expected weighted degree, i.e., d(n)min := mini

∑
j w

(n)
ij p

(n)
ij . Further, let

w
(n)
max = maxi,j w

(n)
ij and w

(n)
min = mini,j w

(n)
ij be the largest and smallest individual weights,

satisfying w
(n)
max

w
(n)
min

≤ ω for some ω > 0 for all n. Then, if there exists a nondecreasing sequence

of k(n) > 0 such that d(n)min ≥ k(n) ln(n) and w(n)
min·w

(n)
max = o

(√
d
(n)
min

ln(n)

)
, the realized centrality

vector centrality vector c(n)(Ã) is with high probability close to the centrality of the average
graph c(n)( ¯̃A) for large n.

Under Assumption 3, we can apply Theorem A1 to conclude that, for any η > 0 and for
all n, we have

Pr

||L̃− ¯̃L|| ≤ 4

√
3wmax ln(4n/η)

dmin

 ≥ 1− η

and by the assumption on the minimum degree’s growth rate, limn→∞ 4
√

3wmax ln(4n/η)
dmin

= 0

regardless of the η chosen, so that under the 2-norm,

L̃ →
p

¯̃L.

For convenience call B = I − L̃ and B̄ the expected equivalent. Clearly, we also have
B →

p
B̄, and can write B = D−1/2ÃD−1/2 = D−1/2ÃD1/2. Using properties of matrix

norms (abusing notation in the second step slightly so that the maximum is over the norm
of the matrices) and the above result, we have

lim sup
n→∞

∥Ã− ¯̃A∥ = lim sup
n→∞

∥D1/2BD−1/2 − D̄1/2B̄D̄−1/2∥

≤ lim sup
n→∞

∥max
{
D1/2, D̄1/2

}
(B − B̄)max

{
D−1/2, D̄−1/2

}
∥

≤ lim sup
n→∞

max
{
∥D1/2∥, ∥D̄1/2∥

}
∥B − B̄∥max

{
∥D−1/2∥, ∥D̄−1/2∥

}
≤ lim sup

n→∞
Ψmax

{
∥D1/2∥, ∥D̄1/2∥

}
max

{
∥D−1/2∥, ∥D̄−1/2∥

}
.

Because Ψ can be chosen to be arbitrarily small, it is sufficient to establish that both
∥D1/2∥2∥D̄−1/2∥2 and ∥D1/2∥2∥D̄−1/2∥2 are bounded by a constant almost surely. To see
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that they are, observe that

∥D1/2∥2∥D̄−1/2∥2 =

√√√√maxi
∑

j w
(n)
ij A

(n)
ij

maxi
∑

j w
(n)
ij p

(n)
ij

≤

√√√√w
(n)
max

w
(n)
min

max
i

√√√√∑j A
(n)
ij∑

j p
(n)
ij

≤
√
ωmax

i

√√√√∑j A
(n)
ij∑

j p
(n)
ij

and similarly,

∥D1/2∥2∥D̄−1/2∥2 =

√√√√maxi
∑

j w
(n)
ij p

(n)
ij

maxi
∑

j w
(n)
ij A

(n)
ij

≤

√√√√w
(n)
max

w
(n)
min

max
i

√√√√∑
j p

(n)
ij∑

j A
(n)
ij

≤
√
ωmax

i

√√√√∑
j p

(n)
ij∑

j A
(n)
ij

.

But since the A(n)
ij are distributed Bernoulli(p(n)ij ), both maxi

√∑
j p

(n)
ij∑

j A
(n)
ij

and maxi

√∑
j A

(n)
ij∑

j p
(n)
ij

converge in probability to 1, so that we have for any η > 0,

lim sup
n→∞

∥Ã− ¯̃A∥ ≤ η
√
ω.

That is, the weighted adjacency matrix can be made arbitrarily close to its expected
counterpart.

We now wish to show that, for arbitrary ψ > 0,

lim
n→∞

Pr(∥(I − θÃ)−1 − (I − θ ¯̃A)−1∥ ≥ ψ) = 0.

The key observation is that the above result implies that for any ζ > 0, there exists
sufficiently large n such that with probability approaching 1, ∥Ãh− ¯̃Ah∥ ≤ ζ for all h ∈ Z+.
Because we have θ < 1 by model assumptions, the formula for infinite geometric series can
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be applied,

lim sup
n→∞

∥(I − θÃ)−1 − (I − θ ¯̃A)−1∥ = lim sup
n→∞

∥∥∥∥∥
∞∑
h=0

θh
(
Ãh − ¯̃Ah

)∥∥∥∥∥
≤ lim sup

n→∞

∞∑
h=0

|θh|
∥∥∥(Ãh − ¯̃Ah

)∥∥∥
≤

∞∑
h=0

ζ|θh|

=
ζ

1− θ

Moreover, because ζ was chosen arbitrarily, this implies that for any ψ > 0,

lim
n→∞

Pr(∥c(n)(Ã)− c(n)( ¯̃A)∥ > ψ) = 0.

Finally, note that θ > 0 and Assumption 4 guarantee that the expected adjacency matrix
has nonvanishing spectral gap (Mostagir and Siderius, 2021).

Denote by P (i, j) =
wij∑
ℓ wiℓ

the transition matrix of a weighted graph. We additionally
define a circulation of a directed graph G as a function F : E(G) → R≥0 that assigns to each
directed edge (i, j) a non-negative value such that

∑
i

F (i, j)1({i, j} ∈ E) =
∑
ℓ

F (j, ℓ)1({j, ℓ} ∈ E).

In particular, denote the circulation Fλ corresponding to stationary eigenvector λ having
eigenvalue 1 as Fλ(i, j) = λ(i)P (i, j).

Let S denote a subset of vertices. Then, we refer to the out-boundary of S as

F (∂S) =
∑

i∈S,j /∈S

F (i, j)

and define F (S) =
∑

j∈S
∑

i F (i, j)1({i, j} ∈ E). Moreover, define the Cheeger constant
(sometimes referred to as conductance) of G as

φ(G) = inf
S

Fλ(∂S)

min {Fλ(S), Fλ(Sc)}
.

Now define the normalized adjacency matrix {T }ij = { ˜̄AD̄−1}ij with corresponding
normalized Laplacian LT = I − D̄−1/2 ˜̄AD̄−1/2. Following Mostagir and Siderius (2021),
we apply Theorem 5.1 of Chung (2005) so that, with slight abuse of notation, we have
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a Cheeger inequality bounding φ(T ). Then φ(T ) = φ( ˜̄AD̄−1) ≥ λT2 /2, where λT2 is the
second eigenvalue of T . Then, denote as υ = λT1 λ

T
2 , so that φ( ˜̄AD̄−1) ≥ (1− υ)/2 > 0.

Next, consider a network T̄ ∗ = TD̄
(
D̄∗)−1, which is symmetric by construction. By

Theorem A1 and the fact that T ∗ and I −L∗ have the same eigenvalues,

∥λ∗t − λ̄∗t ∥ ≤ 4

√
3wmax ln(4n/ψ)

dmin

for t = 1, 2. Hence, with probability approaching 1, T ∗ does not have a vanishing spectral
gap and is connected by the Cheeger inequality. Because T ∗ is connected if and only if T is,
and hence if Ã is, the network is connected with high probability. Therefore, the centrality
measure is well-defined. □

Having determined that the realized centrality can be well-approximated by expected
centrality, the following proof establishes our approach to calculating expected centrality
for large networks.

Proof of Proposition 1. Take any graph G(n) of size n. By the result established in Lemma
1, it is sufficient to consider centrality on the average network. We suppress notation of n for
convenience and denote ρ := wHpH and δ := 1

ρwLpL for some 0 < δ < 1. Additionally, we
denote si the size of group i such that s1 = s and s2 = 1−s and ni = nsi the corresponding
number of voters in group i.

We can then write the matrix I − 2θ ¯̃A as a 2× 2 block matrix with blocks

¯̃A11 = I − 2θ

n1 + δn2
(1s1n×s1n − I)

¯̃A12 = − 2θδ

n1 + δn2
1s1n×s2n

¯̃A21 = − 2θδ

n2 + δn1
1s2n×s1n

¯̃A22 = I − 2θ

n2 + δn1
(1s2n×s2n − I) .

To apply the formula for block inversion, we first want to identify ¯̃A−1
11 . We conjecture

P = ¯̃A−1
11 =


a1 q1 · · · q1

q1 a1 · · · q1
... · · · . . . ...
q1 · · · · · · a1

 .
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Then, we have that [
1 −(n1 − 1) 2θξ1

n1+δn2

− 2θξ1
n1+δn2

1− (n1 − 2) 2θξ1
n1+δn2

][
a1

q1

]
=

[
1

0

]

which indeed has a unique solution. The inverse of the bottom-right block is identical,
swapping group indices. Hence, we can construct the centrality vector by
(A4)

I − 2θ ¯̃A =

( ¯̃A11 − ¯̃A12
¯̃A−1
22

¯̃A21

)−1
0

0
(
¯̃A22 − ¯̃A21

¯̃A−1
11

¯̃A12

)−1

[ I − ¯̃A12
¯̃A−1
22

− ¯̃A21
¯̃A−1
11 I

]

The main-diagonal blocks in the first matrix on the right-hand side of equation (A4) have
the same structure, with a single value on the main diagonal and another value on the
off-diagonal. This has a similar structure to ¯̃A−1

11 , and the inverse can thus be calculated
analogously by solving for main and off-diagonal elements a′i and q′i.6

Substituting these values into equation (A4), we then have that

ĉ
(n)
i (·) = (1 + n−i)a

′
i + (1 + n−i)(ni − 1)q′i.

This expression has a substantive interpretation: a′i is the weighted average of the number
of paths back to a voter in group i through the network, while q′i is the weighted average of
the number of paths to someone else in i’s group through the network. Hence, i’s centrality
does not depend at all on their paths to the other group. This is because each voter is
connected to all others on the expected network, so that all paths within a voter’s group
corresponds to an equivalent cross-party path.

Since n is large by assumption, this expression is asymptotically equivalent to its leading
term, which yields the desired expressions. □

The final lemma allows us to conclude that individual vote probabilities are approximately
asymptotically independent of other voters’ types, allowing us to treat the case of
heterogeneous information similarly to the baseline.

Proof of Lemma 2. Consider any two vectors θ(n) and θ′(n) such that θ(n)i ̸= θ
′(n)
i for at

least one i ∈ V, with corresponding equilibrium vote probabilities ϕ(n) and ϕ′(n). Then by
Assumption 5, we have that

θ̄(n) − µmin(θ̄(n) −
¯
θ(n)) =

ν

χn
.

6 A unique solution exists, but we suppress the expression as it is highly complex and uninformative. Refer to the
replication materials for more information.
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It then follows that
θ̄(n) −

¯
θ(n) =

θ̄(n)χn− ν

µminχn
= o(1)

and hence limn→∞ |θ̄(n) −
¯
θ(n)| = 0, so that also

∣∣θ(n) − θ′(n)
∣∣→
n

0.
Now, we can write any i’s probability of voting for candidate 1 under information profile

θ (suppressing superscripts for readability) as

ϕi =
1

2
+ θi

(−1)xi−1 + u(bi1)− u(bi2) +
∑
j

wij (2ϕj − 1) + γ
∑
m

bm2 − bm1


and similarly for ϕ′ given θ′. Then we can write, for any i ∈ V such that θi ̸= θ′i,

|ϕi − ϕ′i| ≤
(
θi − θ′i

)(−1)xi−1 −
∑
j

wij


+ θi

u(bi1)− u(bi2) +
∑
j

2wijϕj + γ
∑
m

bm


− θ′i

u(bi1)− u(bi2) +
∑
j

2wijϕ
′
j + γ

∑
m

bm


Considering the first term, we have from above that (θi − θ′i) = O(1/n), so that the

term converges to 0 if (−1)xi−1 −
∑

j wij = o(n). Given the assumption of asymptotically
constant weights, this is satisfied such that limn→∞(θi − θ′i)

(
(−1)xi−1 −

∑
j wij

)
= 0.

For the second term, we again have that θ = O(1/n), so that we requireu(bi1)− u(bi2) +
∑
j

2wijϕj + γ
∑
j

bj1 − bj2

 = o(n)

Since ϕj ≤ 1 for all j, it follows from the same argument as above that
∑

j 2wijϕj = o(n).
Since transfers are taken as given, we can again conclude that

lim
n→∞

θ

u(bi1)− u(bi2) +
∑
j

2wijϕj + γ
∑
j

bj1 − bj2

 = 0.

An identical argument establishes the same is true for the θ′ term. Hence, we can conclude
that limn→∞ |ϕi − ϕ′i| = 0, completing the proof. □

Given the above lemma, the proof of the following proposition is largely analogous to
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the proof of Proposition 1 for the baseline model. However, we also need to establish that
Lemma 1 continues to hold under heterogeneous information.

Proof of Proposition 2. It follows from Theorem A1 and Lemma 1 that we can again
consider the expected network only. To see this, using an argument analogous to Part 2 of
the proof of Theorem 1 in Mostagir and Siderius (2021), note that we can define Aθ = ΘA,
and analogously for Ãθ, Āθ, and ˜̄Aθ.

Then, for any ζ > 0, we can write

lim sup
n→∞

∥(I − Ãθ)
−1 − (I − ˜̄Aθ)

−1∥ = lim sup
n→∞

∥∥∥∥∥
∞∑
h=0

(
Ãh
θ − ˜̄Ah

θ

)∥∥∥∥∥
≤ lim sup

n→∞

∞∑
h=0

∥Θh∥
∥∥∥(Ãh − ¯̃Ah

)∥∥∥
≤ lim sup

n→∞

∞∑
h=0

ζ

(
sup
i
θ
(n)
i

)h
= lim sup

n→∞

ζ

1− supi θ
(n)
i

,

where the second line follows from the proof of Lemma 1. Since ζ was chosen arbitrarily
and lim supn→∞ θ

(n)
i = 0, this again implies that for any ψ > 0,

lim
n→∞

Pr(∥c(n)(Ã)− c(n)( ¯̃A)∥ > ψ) = 0.

The remainder of the proof proceeds analogously to that for Proposition 1, where we replace
θ with Θ accordingly. □
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