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Abstract

Social networks play an important role in distributive politics, yet social structure

is rarely considered explicitly. We provide a formal model of elections in which candi-

dates may offer excludable transfers to policy-motivated voters connected on a social

network. By transparently incorporating group shares, homophily, and density of ties

in a generative framework, our model facilitates systematic comparison across societies

that vary on these underlying dimensions. In equilibrium, transfers are determined

primarily by group shares and homophily, with density mattering only indirectly. In-

equalities in provision of goods are driven by disproportionate targeting of minorities.

Additionally, we consider heterogeneous information between candidates, clarifying the

main role of density as a source of more precise information and demonstrating that

homophily can endogenously produce in-group favoritism even when candidates are

purely office-motivated. These results highlight the importance of aggregate social

structure on targeted redistribution and suggest new directions for empirical studies of

non-programmatic distribution.



Why are some societies prone to clientelist relationships, while others are not? The

practice of electoral clientelism, understood here as the targeted provision of benefits in

exchange for electoral support (Kitschelt 2000), has detrimental consequences for society,

slowing development and undermining democracy (Schaffer 2007; Hicken 2011). Clientelism,

most clearly exemplified by outright vote buying, allocates public resources inefficiently: as

an illicit activity perpetrated by candidates to improve their electoral performance, it is

unlikely to correspond to an optimal redistribution mechanism in terms of aggregate voter

welfare. It also violates the logic of democratic processes, creating a preference aggregation

problem where voters no longer choose the candidates they believe are most fit for office, but

those who provide them or their friends and relatives with the most private favors (Groseclose

and Snyder 1996; Banks 2000; Lizzeri and Persico 2001; Dekel, Jackson, and Wolinsky 2008).

Recent work in political science has emphasized the defining role of social network struc-

ture1 in both the form and efficacy of clientelist electoral linkages, especially with regard to

individually targeted strategies such as vote buying (Stokes, Dunning, Nazareno, and Br-

usco 2013; Holland and Palmer-Rubin 2015; Cruz, Labonne, and Querubin 2017; Ravanilla,

Haim, and Hicken 2022). Even in the absence of direct inducements, social pressure can be a

crucial determinant of vote choice (Fafchamps, Vaz, and Vicente 2020). While the usefulness

of localized targeting is thought to be determined by the underlying social structure (Finan

and Schechter 2012; Larson and Lewis 2017), existing work has focused exclusively on the

first-order properties (i.e., degree) of the targeted voters without considering the role of the

network as a whole. While it is natural to suppose that more socially influential voters make

the most attractive targets for co-optation, then, the question of which societies are more

or less favorable to certain redistributive strategies remains unanswered.

In this article, we study a networked model of a large election in which candidates2

1 By social structure, we mean the propensity of social and political groups to adopt particular patterns of

interrelationship (Granovetter 2005). In this sense, the existence of similar, tightly-connected individuals

in a particular village is not necessarily reflective of social structure. A general tendency of residents of

that village to organize into such cliques, however, does fall under the heading of social structure.
2 While we use the term “candidate” to refer to the agents in our model, it may be more natural in many
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compete to influence policy-motivated voters with targeted and excludable transfers. Each

candidate is associated with a policy and can extend private transfers to voters at the expense

of a public good, which both candidates and voters care about. Voters belong to a group with

distinct preferences and care about the welfare of their neighbors on the network, so that

voting decisions are also informed by the electoral preferences of their social connections.

Our model therefore speaks most directly to the literature on targeted transfers as a means

of signaling to groups of voters (Kramon 2016a,b; Auerbach 2019; Fafchamps and Labonne

2020; Fafchamps, Vaz, and Vicente 2020). The unique equilibrium transfer to a voter is

proportional to their Katz-Bonacich centrality on a normalized network, capturing the core

tradeoff between targeting voters who influence others and those who are easily influenced.

The sensitivity of any agent’s centrality to small changes on the network, however, com-

plicates direct analysis of the role played by a society’s underlying structural features. To

overcome this problem, we eschew consideration of exact social network realizations in favor

of an explicit generative model (specifically, a stochastic block model). In particular, we ap-

ply techniques from random graph analysis (Chung and Radcliffe 2011) to a class of games

on networks for which equilibrium strategies are proportional to the vector of Katz-Bonacich

centralities (Katz 1953; Bonacich 1987; Ballester, Calvó-Armengol, and Zenou 2006).3 In do-

ing so, we derive closed-form expressions for expected equilibrium strategies across repeated

draws from a generative model representing a society with fixed characteristics.

Although approximations, these strategies are arbitrarily close to those played on any

realization in large societies. Since these expressions depend on the parameters of the gen-

erative model, and not on the arbitrary structure of a specific realization, they allow us

to study the effects of deep features of societies on the efficacy of targeted redistribution

directly. A core advantage of this approach is that it allows systematic comparison across

societies (either cross-sectionally or over time) based on stable underlying features of the

settings to think of them as local brokers or party agents acting on behalf of a candidate.
3 This approach has provided a good empirical fit when compared to alternative measures of centrality

(Calvó-Armengol, Patacchini, and Zenou 2009; Battaglini and Patacchini 2018).
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social environment, without needing to consider a complete network in each case of interest.

We focus on three network-level attributes that research on social networks has consistently

highlighted:

1. density, or the ratio of realized to potential ties;

2. fractionalization, or the number and relative size of salient social groups;4 and

3. homophily, or the relative propensity of agents to form ties with members of their own

group.

Our model suggests that diversion of public resources will be most prevalent when a

relatively small minority can be targeted and when candidates are well-informed about vot-

ers’ preferences. These predictions, while consistent with the literature, highlight important

channels that have been largely overlooked. In our model, fractionalization matters not be-

cause of differences in preferences (Easterly and Levine 1997; Alesina, Baqir, and Easterly

1999) or between-group inequities (Baldwin and Huber 2010), but because it affects the pro-

portion of ties that are within or between groups and, thus, the level of social persuasion that

can be achieved. Similarly, although the importance of information about individual voters

for contract enforcement is well-studied (Finan and Schechter 2012; Stokes et al. 2013), we

highlight the value of information about neighborhoods of voters, as the precision of can-

didates’ knowledge determines the weight they place on social persuasion effects of higher

order in equilibrium.

Increased social segregation between groups, however, typically reduces the value of tar-

geted transfers. Since minorities are disproportionately targeted, the incentive to target

individuals is moderated as members of minorities become less connected to others on the

network. This is consistent with previous work showing that segregation does not lead to

increased ethnic favoritism (Franck and Rainer 2012) and suggests a countervailing effect

4 See Alesina, Devleeschauwer, Easterly, Kurlat, and Wacziarg (2003) for a discussion of appropriate ways

to conceptualize fractionalization.
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that may partly explain the contradictory findings on the effects of ethnic diversity (Habya-

rimana, Humphreys, Posner, and Weinstein 2007; Baldwin and Huber 2010). While ethnic

politics depend on the existence of socially distinct groups (Chandra 2007), social segregation

also limits candidates’ ability to benefit from cross-group influence.

Finally, when the quality of information is allowed to vary across candidates and vot-

ers, we find that spending is increasing in fractionalization when the candidate has low-

precision information on minorities and is typically decreasing in homophily. Inequality, on

the other hand, is typically decreasing in fractionalization and has a nonlinear relationship

to homophily. These findings are in line with a large literature emphasizing the information-

gathering role of brokers (Stokes et al. 2013; Frye, Reuter, and Szakonyi 2019; Ravanilla,

Haim, and Hicken 2022), but indicate that the effects of information flow to candidates and

between voters may be in tension.

These results suggest new directions for empirical studies of distributive politics. While

simple network properties such as density may matter indirectly through their association

with inter-group relations or information structure, our findings underscore the importance

of attending to less obvious network features that may have counterintuitive effects.

Targeted Redistribution and Social Influence

Targeted redistribution in the form of vote buying, local or ethnic favoritism, or the provision

of excludable non-monetary goods and services to supporters is a prevalent feature of un-

consolidated democracies and is associated with negative economic, social, and institutional

outcomes (Hicken 2011). While the use of targeted inducements to influence voting decisions

may be effective (Rueda 2015), candidates face several key challenges in implementing these

strategies in large elections (Dekel, Jackson, and Wolinsky 2008) that frequently limit its

effectiveness in practice (Vicente and Wantchekon 2009).

Candidate uncertainty over voter preferences can make it difficult to employ individually

targeted strategies effectively. In large elections, no candidate is likely to have enough
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information, resources, or bureaucratic capacity to reliably identify, approach, and provide

private goods to the optimal voters. Further, since direct exchange is illegal and ballots

are typically secret, politicians cannot be sure of compliance (Brusco, Nazareno, and Stokes

2004; Finan and Schechter 2012; Keefer and Vlaicu 2017). Social network connections to and

between voters, however, can facilitate both information gathering and monitoring (Calvo

and Murillo 2013; Frye, Reuter, and Szakonyi 2019). The embeddedness of candidates and

brokers in social and political networks may therefore play a crucial role, as they facilitate

targeting, relay information to politicians, and pressure highly-connected voters to follow

through on agreements (Fafchamps and Labonne 2017; Cruz, Labonne, and Querubin 2017;

Cruz 2019; Fafchamps, Vaz, and Vicente 2020; Ravanilla, Haim, and Hicken 2022).

While the importance of networks has emerged as a consistent theme, much of this work

has focused on client-patron ties, monitoring, and the targeting of handouts to reciprocal

voters (Finan and Schechter 2012; Cruz 2019; Ravanilla, Haim, and Hicken 2022). A growing

literature, however, has begun to recognize another dimension of targeted conditional trans-

fers as an electoral strategy: handouts may serve to provide voters with information about

the likely behavior of the candidate once in office and activate peer pressure effects, acting as

a multiplier on resources spent (Kramon 2016a,b; Auerbach 2019; Fafchamps and Labonne

2020; Fafchamps, Vaz, and Vicente 2020). However, to the extent that existing work has

considered network structure, it has focused on the individual-level features of voters or

brokers (typically, degree centrality) that facilitate targeting. In contrast, little is known

about the types of social environments that are most conducive to different redistributive

strategies.

A closely related difficulty can be found in the literature on the political economy of

ethnicity, where the network density of ethnic groups is taken to be a defining feature that

mediates between diversity and outcomes such as conflict, public goods provision, and the

development of clientelism (Miguel and Gugerty 2005; Chandra 2007). For instance, while

Fearon and Laitin (1996) explain the prevalence of cooperative equilibria in diverse societies

5



by the relatively high probability of interaction among members of the same group in dense

networks, Larson (2017) demonstrates using a formal model that integration, not density, is

the relevant feature. Examining this relationship empirically, moreover, Larson and Lewis

(2017) find that denser ties are actually associated with greater total diversity, contrary to

conventional wisdom. To generate reliable predictions, we therefore need to engage with

network structure explicitly.

Given the inherent complexity of social networks, this issue is well-suited to a formal mod-

eling approach. Few models of targeted redistribution, however, have considered the role of

connections between players—most assume continuous distributions of voters (Groseclose

and Snyder 1996; Lizzeri and Persico 2001), for which results do not necessarily generalize

to finite populations (Banks 2000; Dekel, Jackson, and Wolinsky 2008). This literature has

generated important insights into the possibility of vote buying to induce inefficient super-

majority coalitions (Groseclose and Snyder 1996; Banks 2000), the difficulty of overcoming

private incentives by providing public goods (Lizzeri and Persico 2001), the role of varying

commitment structures and institutions in mitigating inefficiencies in redistribution (Dal Bó

2007; Dekel, Jackson, and Wolinsky 2008), and the institutional factors driving the mix of

strategies chosen by clientelist machines (Gans-Morse, Mazzuca, and Nichter 2014). How-

ever, variation is driven either by individual factors or by institutional environments. Despite

the prominent role afforded to ties between actors in empirical accounts, this aspect of the

strategic environment has gone largely unexplored.

An important exception comes from Battaglini and Patacchini (2018), who study the

problem of influencing members of a legislature through campaign contributions using a

networked model. This work finds, following Ballester, Calvó-Armengol, and Zenou (2006),

that the equilibrium transfers to voters (legislators) are proportional to their Katz-Bonacich

centrality (Bonacich 1987) weighted by the equilibrium probability of pivotality. While the

basic structure of their model is similar to ours, Battaglini and Patacchini (2018) focus on

the role of pivotal voting in small legislative elections, while we mainly consider the effects of
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network-level changes in large general elections. By shifting attention from realized networks

to an underlying generative model, we can draw sharp conclusions about the effects of social

structure.

Model

In this section, we lay out and justify the basic structure of the model. For a more in-depth

discussion of the underlying assumptions and their consequences for our findings, refer to

Section . We begin by assuming that voters care about policy in a unidimensional space

and the provision of a public good, but that they can also be influenced with targeted

transfers that alter their likelihood of voting for one candidate over another. Since we are

primarily interested in elections where n is sufficiently large that the probability of pivotality

is approximately zero, we assume expressive voting based on net preference after transfers.

In order to retain our focus on the network-specific elements of the model, we treat transfers

from both candidates as credible campaign promises (Dekel, Jackson, and Wolinsky 2008).5

These offers, therefore, are not a binding contract from the perspective of the voter: voters

may receive promises from both candidates and will ultimately vote in accordance with their

own preferences. As such, candidates do not enter into a binding contract to receive a vote

with certainty, but receive only an improved likelihood of support. This setting is in line

with existing findings highlighting the importance of voter reciprocity norms and repeated

interactions as a means of contract enforcement (Rueda 2017; Cruz 2019; Ravanilla, Haim,

and Hicken 2022).

The key feature of this model is network dependence. In addition to being influenced

by direct transfers and campaign promises, voters place some weight on their neighbors’

expected votes. This approach to modeling dependency, which typically implies that agents

take actions in proportion to their centrality (Ballester, Calvó-Armengol, and Zenou 2006),

5 For instance, candidates may choose between offering voters attractive but unnecessary jobs at a local

school or investing in improving the school itself.
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has been employed in a variety of applications capturing peer effects and found strong em-

pirical support (Battaglini and Patacchini 2018; Fafchamps and Labonne 2020). While our

primary interest is in the role played by aggregate network properties, in this section we

take the network as fixed in order to characterize equilibrium strategies conditional on the

network. In the following section, we shift our focus to social structure, assuming that the

network is generated according to a stochastic block model and studying the effect of changes

in its parameters.

Substantively, the network spillover mechanism has two main interpretations. First,

voters can be thought of as communicating with their acquaintances about their intent to

vote, which provides information about the candidate’s desirability. A transfer made to any

voter on the network will positively affect all voters’ likelihood of voting for a candidate

on a connected graph, albeit with diminishing returns in social distance. Second, network

spillovers may be a consequence of social pressure. Even if voters do not gain any payoff

relevant information from their neighbors, they may still be intrinsically motivated to take

the same action as a majority of them.

While more-connected voters are exposed to greater influence from the whole network, we

normalize the total social influence (i.e., the sum of edge weights) of any voter’s immediate

connections to one so that all voters place equal weight on their neighbors’ vote probabilities.6

This implies that voters can be thought of as making their decisions based on a weighted

average of their neighbors’ actions, and not a sum. This aspect of the model diverges

somewhat from others in the literature who assume that the most connected voters are also

the most easily influenced, and is motivated by empirical evidence that the effect of peer

pressure is similar at all levels of connectedness (Green and Gerber 2010; Lazer, Rubineau,

Chetkovich, Katz, and Neblo 2010; Jang, Lee, and Park 2014).

Both voters and candidates care about the latter’s programmatic commitment to provide

a public good, but candidates face a potential trade-off between these two goals. The funds

6 See Appendix A.5 for a discussion of the consequences of relaxing this assumption.
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for private transfers to voters, which can provide an electoral advantage, must be diverted

from the provision of the public good. Our model is thus designed to capture the basic

trade-off between public and private provision that has been a focus of much of the empirical

literature (Cruz, Labonne, and Querubin 2020). Crucially, public good provision may also

benefit from the structure of the network since all voters are equally affected by positive

spillovers. The effectiveness of targeted distribution relies on the ability of candidates to

exploit the differential benefits of swaying some voters relative to the lost utility this induces

for all others. At the same time, candidates must also avoid triggering negative spillovers

arising from the dissatisfaction of influential voters with diversion of funds from public good

provision.

Finally, we assume that candidates attempt to maximize vote share rather than to win a

majority. This assumption is empirically appropriate in many cases, such as in authoritarian

regimes, where incumbents frequently seek to achieve overwhelming vote shares (Reuter

and Robertson 2012), or under proportional representation where votes translate directly

into influence. It is also worth noting that, while we use the term “candidate,” it may be

more appropriate in many applications to view the agents as vote brokers, since they are

assumed to have accurate knowledge of the local social network structure (Ravanilla, Haim,

and Hicken 2022) but are uncertain of voters’ final decisions.

Setup

Consider a game with n voters that need to make a choice between two candidates. All

voters are located on a network G, which is assumed to be connected.7 We use the terms

network and graph interchangeably throughout the paper to refer to an undirected graph,

which is an ordered pair (V , E) where V is a set of n vertices and E is a set of m edges such

that E ⊆ {{x, x′} : x, x′ ∈ V ∧ x 6= x′}.8 Each candidate k = 1, 2 is associated with a policy

7 A connected undirected graph is one in which a path exists between any two vertices.
8 See Jackson (2010) for a general primer on graph theory as it relates to games on social networks.
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yk = k, where the policy space is a subset of R, and each voter i ∈ V is endowed with a group

membership `i = 1, 2, which corresponds to an ideal policy xi = `i. Substantively, groups

may be interpreted as corresponding to any grouping that is both socially and politically

meaningful, such as political parties and ethnic or religious groups.

To gain vote share, candidate k can extend n private offers or bribes, bik ≥ 0. These

bribes, however, come at the expense of a public good, which the candidate also values. A

candidate k’s problem is to choose bk ∈ Rn
+ that solves

max
bk

αk
∑
i∈V

φik(bk, b−k)− bk · 1

subject to bik ≥ 0 for all i

where φik(·) is the probability voter i votes for candidate k and αk represents the value

placed on one vote by candidate k. We thus normalize the value placed on a unit of public

good by the candidate to 1 so that αk can be interpreted as the candidate’s relative degree of

office motivation. In particular, an αk of 0 corresponds to a fully programmatic candidate,

who trivially prefers to offer no private transfers and promise the full amount of the public

good, while αk →∞ implies pure office motivation.9

Voters support the candidate that offers them a higher total utility.10 All voters care

about policy according to a standard quadratic loss function and have γ ≥ 0 value for a unit

of public good, so that they incur a loss of γ for every unit of bribes offered by a candidate

to any voter. Additionally, voters have private information unknown to the candidates and

other voters in the form of a private valence shock for each candidate, εik ∈ R. Without

loss of generality, we can normalize εi2 = 0 and define εi := εi1, which we assume is an

independent, uniformly distributed mean-zero random variable with support on
[

1
−2θ

, 1
2θ

]
,

9 We focus on candidates that can perfectly target individual voters in the main text. Candidates that

assign benefits on the basis of a policy rule, as in the case of ethnic favoritism, where goods are provided

based on observable group membership (Chandra 2007), is considered in Appendix A.3.
10There is no obligation to vote for a candidate who offered them a bribe.

10



where we impose that the parameter 0 < θ < 1 to ensure that all solutions are well-defined.11

We interpret θ as the candidates’ information about the utility of transfers to voters, with

smaller θ indicating less-informed candidates. θ can also be taken as reflecting the intensity

of the voters’ commitment problem, as candidates with higher values can be more certain

that transfers will actually secure votes.12

Social connections also matter. In particular, voters prefer to vote for the same candidate

as their neighbors as defined by the network. Denote by φik(·) the probability voter i votes

for candidate k given all bribes, but before the realization of the valence shock εi. Then,

each voter i places weight wij > 0 on voter j’s probability of voting for candidate k if i and

j are connected, and 0 otherwise. In the graph G, the set of a voter i’s social ties is denoted

by Ti(G) ⊆ V .13 The total social influence on each voter is normalized to 1, so that the

actual influence of each neighbor j on i’s utility is equal to
(∑

h∈Ti(G) wih
)−1

wij, implying

that more highly connected voters are less influenced by each individual neighbor.14 An

immediate consequence is that network density only plays an indirect role on equilibrium

behavior, as adding edges does not increase the total influence on the network. In much of the

subsequent analysis, we will assume for simplicity that wij ∈ {wL, wH} with wH ≥ wL, where

wH is the weight placed on within-group connections and wL on cross-group connections.

All fixed-network results hold for the more general case, however.

The expected payoff voter i receives from candidate k can thus be expressed as

Ui(k) = −(xi − yk)2 + u(bik) +

∑
j∈Ti(G)wijφjk(b)∑

h∈Ti(G) wih
− γ

∑
m∈V

bmk + εik (1)

where u(·) is voter utility over bribes, which we assume is strictly increasing with diminishing

11Although this restriction is necessary, it is not sufficient. For technical reasons, we require two additional

conditions that guarantee θ is sufficiently small. See Appendix A for a more precise statement.
12Equivalently, θ can be taken as a reflection of voters’ reciprocity norms in the vote-buying context, as it

modulates the likelihood of any given transfer actually resulting in a vote. We explore the consequences

of systematic variation in this parameter in the Section .
13Here, G is a fixed graph and may have any structure provided that it is connected.
14See Appendix A.5 for an analysis of the consequences of relaxing this assumption.
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marginal returns and that the rate of diminution is decreasing, with infinite marginal utility

as bribes approach zero. Formally, utility over bribes satisfies u′(·) > 0, u′′(·) < 0, and

u′′′(·) ≥ 0. Additionally, we assume limb→0 u
′(b) =∞ and limb→∞ u

′(b) = 0. Together, these

assumptions ensure that all solution objects are well-defined and rule out the possibility of

corner solutions.

Timing

The timing of the game is as follows.

1. Nature randomly chooses a private utility shock for each voter, εi ∼ U
[−1

2θ
, 1

2θ

]
2. For all voters i ∈ V , each candidate k = 1, 2 offers a bribe bik ≥ 0, which determines

the residual public good offered

3. Each voter i ∈ V casts a ballot for candidate 1, vi = 1, or candidate 2, vi = 2

Equilibrium

A voter will cast a ballot for candidate 1 if and only if Ui(1) ≥ Ui(2). Here, candidates will

not be able to perfectly anticipate voting behavior due to their imperfect information over

voter preferences. We can rewrite15 the candidates’ problem as

(J [u]− Γ)> ·
(
I − 2θÃ

)−1

· 1 =
(1− λ)

αkθ
(2)

where J [·] is a diagonal matrix with u′(bi) as the nonzero entries, Γ is an n×n square matrix

such that every element of Γ is γ, I denotes the identity matrix, 1 denotes an n-vector of

1s, λ is an n-vector of Lagrange multipliers, and Ã is a normalized weighted adjacency

matrix. Note that by assumption on θ being sufficiently small, (I − 2θÃ) is guaranteed to

be invertible, so the problem is well-defined.

15See Appendix A for derivation.
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(a) Example of a realized graph
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(b) Induced weighted directed graph

Figure 1: An example of a realized (undirected) network with n = 5 and group labels
`1 = `2 = 1 and `3 = `4 = `5 = 2 and the corresponding induced weighted directed network.
In the weighted directed graph, thicker arrows indicate stronger influence, with wij = wH if
`i = `j, wij = wL otherwise, and naturally wH > wL.

Definition 1. Consider a realized graph G and a corresponding adjacency matrix A such

that for all i, j ∈ V, Aij = 1 if j ∈ Ti(G) and Aij = 0 otherwise. Then, the normalized

weighted adjacency matrix Ã is given by, for all i, j ∈ V,16

Ãij =
wijAij∑

m∈V wimAim
.

By employing the normalized weighted adjacency matrix, we can account for several

important features of social interaction. First, a voter i may be more influenced by one

social tie than another. Second, it will be more difficult for any one person to influence a

highly connected voter than a relatively disconnected one, e.g., an incremental change in the

probability that i’s neighbor j votes for candidate 1 will have less of an effect on i’s vote

probability if i has hundreds of neighbors than if j is i’s only neighbor.

From the candidates’ problem in equation (6), we can recover the equilibrium transfer

16Note that since all weights are strictly positive, the assumption that G is connected implies that the

normalized weighted graph is strongly connected.
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that voter i receives from candidate k,

bik = [u′]
−1

(
1

ci(w, θ;G)

[
γC(w, θ;G) +

1

αkθ

])
, (3)

where ci(·) is the ith element of c = (I − 2θÃ)−1 · 1, our measure of centrality, and

C(·) ≡
∑

i∈V ci(·). The measure c is the Katz-Bonacich centrality on the weighted directed

network corresponding to Ã with attenuation parameter 2θ. The nature of the strategic

environment—specifically, the structure of social influence—can therefore be thought of as

inducing a latent directed network with connections corresponding to the influence of i on

j, which is decreasing in j’s weighted degree and greatest when `i = `j. The value of a voter

to a candidate is thus proportional to their centrality on this latent network, which captures

the weighted sum of directed walks of any length that include that voter.

By taking derivatives of the equilibrium bribes defined by equation (3), it is clear that

equilibrium transfers offered by candidate k are weakly decreasing in γ and n, while they

are weakly increasing in αk and θ. These results are intuitively consistent with the basic

strategic environment: the socially optimal transfers to voters would correspond to a transfer

scheme such that the marginal value is equated with γ, weighted by the total centrality on

the network, which can be taken as a measure of the additional positive spillover candidates

gain from providing a public good. Network spillovers also incentivize candidates to provide

additional transfers beyond this level, however. The network induces a tradeoff between the

positive effect associated with providing a transfer to i, which are captured by ci and the

concomitant negative effect this induces via every other voter being deprived of the public

good, captured by C. The relative value of these spillovers is moderated by αk—that is, more

office-motivated candidates place higher value on the additional increase to expected vote

share afforded by targeting high-centrality voters—and by θ, which determines the likelihood

of their a realized increase in vote share. Finally, it is not necessarily true that an increase in

the number of voters results in a decrease in transfers17, since it may in general be possible

17Although this is true on average as we show in the next section, since, as might be expected, scarce
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to add another voter in such a way that either or both of (i) centrality increases for some i

due to the creation of new paths (ii) C decreases due to the reduction of weights on existing

paths.

It is also of note that, if both candidates have identical degrees of office motivation (i.e.,

α1 = α2 = α), then they will also choose the same transfer profile in equilibrium. This can

be thought of as an analogue to the Median Voter Theorem for spatial models of competi-

tion (Downs 1957); it is optimal for both candidates to respond by extending offers to the

most valuable voters, who are determined completely by their network positions. A further

implication is then that targeted distribution only influences aggregate electoral outcomes if

candidates diverge in their motivations or resources. When candidates are perfectly symmet-

ric, their offers perfectly offset one another, so that voting decisions are determined entirely

by ex ante preferences, which is consistent with findings in the empirical literature (Vicente

and Wantchekon 2009).

In this setting, it is straightforward to see why this might not hold true: for instance,

if voters respond differently to offers from candidates belonging to their own group, then

incentives for in-group favoritism will exist. In a later section of the paper, we will take up

the role played by heterogeneous information in this regard, while Appendix C considers the

case when information and network structure are correlated.

To study the dependence of equilibrium strategy on social structure, we now transition

to considering the underlying generating model that gave rise to the observed network.

Social Structure

This section studies the role of social structure and provides the main results of this paper.

In particular, we employ tools from random graph theory to derive closed-form expressions

for the centrality of voters in each group, yielding results in terms of the main features of

resources must be allocated among more voters.
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social structure: group fractionalization, density, and homophily. These techniques18 allow

us to consider centrality on the average graph only, permitting analysis of comparative statics

explicitly in terms of social structure—that is, the underlying parameters that govern the

social network generative process—rather than of a single realized graph.

While the resulting statements relate to expectations and therefore do not necessar-

ily apply to specific network realizations, Theorem 1 guarantees that they will hold with

probability approaching one in any large network under moderate assumptions.19 These

results, therefore, allow us to make empirically applicable predictions about how large soci-

eties behave that permit systematic comparison across space and time based on underlying

commonalities, without needing to observe the complete centrality vector for every case of

interest.

While a potential concern is that the observed network’s properties have a higher proba-

bility of deviating dramatically from its expectation in small, isolated communities of only a

few hundred residents, this issue is mitigated by empirical work that has shown clientelism is

also prevalent in urban and semi-urban environments where our asymptotic approximations

are guaranteed to hold, such as major cities in Argentina (Brusco, Nazareno, and Stokes

2004; Stokes 2005).

We now formalize the concept of an average network in the context of our model, which

can be conveniently represented through its average adjacency matrix.

Definition 2. The average normalized weighted adjacency matrix ¯̃A is given by, for

all i, j ∈ V,

¯̃Aij =
wijpij∑

m∈V wimpim
.

For the following results, we assume that the graph is drawn according to a two-group20

18Which are technical in nature and therefore reserved for Appendix D.
19Specifically, we require that the minimum expected degree grows at a rate greater than ln(n), an assumption

generally borne out empirically (Eubank, Kumar, Marathe, Srinivasan, and Wang 2004).
20Results are substantively unchanged with a larger number of groups, but we focus on the two-group

case in this section to facilitate exposition and because it is of special interest in the literature on ethnic

distributional politics at the local level (Fearon and Laitin 1996; Padró i Miquel 2007; Larson and Lewis
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stochastic block model with share s ≥ 1
2

of group 1, a probability pH of intra-group connec-

tion, and a probability pL ≤ pH of inter-group connection.21 That is, voters are assumed

to be endowed with group membership ex ante and each possible dyad forms a tie indepen-

dently and randomly with a probability that depends only on whether its members belong

to the same group. For further discussion and justification for employing a stochastic block

model, see the section on assumptions and limitations.

We assume for simplicity that wij = wH for in-group voters and wij = wL for out-

group voters, with the natural assumption that wH ≥ wL. Finally, we denote by δ ∈

(0, 1) the ratio wLpL
wHpH

, which thus captures the degree of homophily on the network (lower

δ corresponds to more homophily). Denoting wLpL as p̃L for ease of presentation (since

weights and probabilities do not have separable effects on average), we can re-parameterize

the model by letting ρ = p̃H and hence p̃L = δρ,22 so that ρ captures the baseline propensity

to form ties and δ reflects the extent of differential preference for in-group members. To

see how these relate to network density, note that expected density is given approximately

by ρ (1− 2s(1− s)(1− δ)) for large n.23 Here, the first term reflects the effect on density

of a simple increase in connection probabilities, while the second reflects the attenuating

impact of homophily as the degree of fractionalization changes, impacting the proportion of

cross-group ties.

The main result, which draws on the asymptotic bounds on the average adjacency matrix

derived in Appendix A, allows us to obtain closed-form expressions for each voter’s centrality

that hold with high probability given large n. First, note the following definition.

Definition 3. Two sequences of random vectors cn and c′n are asymptotically equivalent

2017; Larson 2017).
21Notably, the parameter s captures all of the information provided by the Herfindahl-Hirschman index,

which is a widely used empirical measure of concentration, especially in the literature on the political and

economic consequences of ethnic diversity (Easterly and Levine 1997; Posner 2004).
22For technical reasons we impose that ρ, δ > 0, which implies that all average weights are positive. Although

this means that networks where cross-group spillovers are strictly negative fall outside of the scope of the

analysis in this section, it is consistent with a distribution on w that allows for negative w to be drawn

for certain i, j, provided that the expectation is positive.
23See Appendix A for derivation.
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if and only if cn − c′n →
p

0.

Further define ψs,δ := s(1−s)(1−δ) < 0, implying that we can rewrite expected density as

ρ(1− 2ψs,δ), so that ψs,δ captures the attenuating impact of fractionalization and homophily

on density. Then we can state the following proposition.

Proposition 1 (Expected Centrality). Suppose that the assumptions of Theorem 1 hold,

and consider a sequence of random graphs Gn drawn from a stochastic block model. Then the

centrality of a voter in party 1 and 2 is asymptotically equivalent to

c1 =
(1− s) (δ − ψs,δ(δ(1 + θ)− 1 + θ))

sn ((1− s)δ + ψs,δ) (s(δ + θ − 1) + 1− θ)
(4)

and

c2 =
δ − ψs,δ(δ(1 + θ)− 1 + θ)

n(s− 1 + ψs,δ)(s(δ + θ − 1)− δ)
, (5)

respectively, with probability approaching 1 as n→∞.

The proof of this result is presented in Appendix D. Unlike realized networks, the expected

network is necessarily complete, since all voters have positive probability of being connected

to all others. Note that this need not apply to any specific realization, as all possible

networks on n vertices are in the support of the generative model. Instead, the completeness

of the expected network (more precisely, the strict positivity of the matrix of tie formation

probabilities) allows us to study how changes in generative parameters affect equilibrium

strategies.24 While it remains possible that realized networks will be drawn in such a way

that the equilibrium strategy differs from these expressions, Proposition 1 guarantees that

this will occur with vanishing probability in sufficiently large societies. Thus, the quantities

in expressions (4) and (5) serve to approximate voter centralities for any large society that

we can expect to realize.

24 In particular, while the adjacency matrix can be arbitrarily large, it only contains four unique values that

correspond to directed connections within and between each group. Since this generates the structure of a

block matrix, it is therefore possible to derive an explicit formula for its inverse, which in turn determines

the value of each voter’s centrality.
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An immediate conclusion that follows from Proposition 1 is that, while centrality is a

function of group sizes, information, and homophily, expected density does not directly re-

late to equilibrium transfers (but see Appendix A.5). While changes in δ and s influence

density via ψs,δ, which in turn relates to centrality, a “pure” increase in density via ρ does

not have any impact on expected centrality, holding these parameters constant. That is, a

uniform increase in connection probabilities between all voters would not influence equilib-

rium transfers in any way. Although their shared dependence on homophily and group share

may induce a correlation between network density and transfers, Proposition 1 implies that

density per se should not be expected to have a direct causal impact. Despite the prominence

of density in many informal accounts of network effects, then, our model suggests this need

not be a major determinant of the efficacy of targeted transfers, further highlighting the

value in formally considering the entire network structure, and not simply the connections

of individual voters in a given realization.

Also of note is that ci ≤ cj when group i is larger than group j—i.e., each individual

member of the minority group will always receive a higher equilibrium transfer than a member

of the majority. Intuitively, this is driven by the fact that the influence of each member of

the minority group increases as the group becomes smaller, making them more valuable to

target.25

It is straightforward to examine how the total spending of candidates, as well as the level

of between-group inequality, depends on these parameters by taking partial derivatives. Let

B denote the sum of bribes across all voters and Q denote the level of inequality, specifically

Q ≡ (b1 − b2)2, which ranges from 0 (perfect equality) to positive infinity. Then, we have

the following result.

Proposition 2 (Total Bribes). ∂B
∂α

> 0, ∂B
∂γ

< 0, ∂B
∂s
> 0, ∂B

∂θ
> 0, and for all θ ≤ θ∗ ≈ 0.23,

∂B
∂δ
> 0.

25Assuming any positive degree of homophily. In the case that δ = 1, members of each group are, on average,

interchangeable and thus receive identical expected transfers.
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Since θ needs to be small for the solution to be well-defined, the condition for these

results will always hold for large n.26 The effect of α, γ, and θ here are intuitive: more

weight placed on public good provision, either by candidates or voters, reduces diversion

of resources towards private provision. Similarly, better information increases the marginal

value of targeting any voter. The other two results are non-obvious, however. The effect of δ

is counterintuitive: an increase in δ (i.e., a decrease in homophily) increases total spending.

While the mechanism for this is straightforward—higher δ corresponds to stronger “weak

ties,” raising the value of transfers to all voters—it is again at odds with many informal

descriptions of dense networks that are argued to be particularly amenable to clientelism

and vote buying due to their high degree of homophily.

Moreover, while it might be expected that more unequal group sizes lead to increased

expenditure, the mechanism is somewhat surprising. Increasing the size of the majority

group leads to a relative increase in the individual-level transfers offered to members of the

minority group (see below), which more than compensates for the reduction in its size. It is

similarly straightforward to study the effect of network parameters on inequality.

Proposition 3 (Group Size and Inequality). Let Q ≡ (b1 − b2)2 denote the total inequality.

Then, ∂Q
∂α
≤ 0, ∂Q

∂s
> 0, ∂Q

∂θ
≤ 0, and ∂Q

∂γ
≤ 0. Moreover, ∂Q

∂δ
< 0 only if δ ≥

√
1− 2θ, and is

positive otherwise.

Once again, the effects of information and group size are intuitive, suggesting that bet-

ter informed candidates in more demographically uneven societies will concentrate their

resources more intensely in the groups that provide the highest return. As with total spend-

ing, however, the effects of homophily are surprising. While higher homophily (lower δ)

can increase inequality, this only holds for networks that exhibit extremely low degrees of

homophily (since by assumption θ must be small). Since group membership is the primary

determinant of policy ideal points by construction and homophily based on political prefer-

26 In general, the cutoff θ∗ depends on the other parameters; however, we verify numerically that 0.23 is

an approximate lower bound and, in large networks, the invertibility assumption on the centrality matrix

binds (see Assumption 2 in the Appendix).
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ences is generally quite strong (Huber and Malhotra 2017), this is unlikely to occur in real

societies. In contrast, at more moderate levels of homophily, increasing the relative influence

of voters on members of their own group actually decreases the overall inequality of transfers

from candidates.

This result is especially remarkable given that Dasaratha (2020) arrives at the opposite

conclusion regarding Katz-Bonacich centrality on an undirected and unweighted network. In

fact, the key to understanding this result is the tradeoff faced by candidates between targeting

highly-connected voters, who influence many others, and voters whose neighbors are not

highly connected, since they are more easily influenced. In the extreme, as δ approaches

0, the greater value of transfers to members of the minority is completely offset by their

disconnectedness from the majority, such that the equilibrium bribes approach equality.

Heterogeneous Information

A key feature of the model studied thus far is that both candidates have identical and

completely homogeneous information about the preferences of all voters, modeled as a single

commonly known value of θ. Among the competing candidates, homogeneous information

unsurprisingly results in homogeneous behavior. Preference for one group over another is

also driven mainly by group share, with candidates tending to favor the (marginally more

valuable) minority regardless of their own affiliation. In practice, however, this is unlikely to

hold true. Empirical research has consistently emphasized the crucial intermediary role of

brokers and local agents who possess superior knowledge about particular groups of voters,

and in competitive settings informational asymmetries across candidates may account for

divergent strategies (Stokes 2005; Stokes et al. 2013; Calvo and Murillo 2013; Fafchamps

and Labonne 2017; Cruz, Labonne, and Querubin 2017).

In this section, we study the consequences of relaxing this assumption, allowing the pre-

cision of candidates’ information to vary arbitrarily across candidates and voters. Variation
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in information may arise due to systematic differences between the two groups and thus

affect both candidates symmetrically. For instance, if partisanship is stronger in one party

than another, then candidates may view those associated with the “weaker” group as more

likely to be swing voters, since knowing their group label—the only information visible to

the candidate in the model—is less informative about their ultimate decision. Intuitively,

the first-order effect of this variation is to reduce the value of transfers to members of the

less predictable group, as they are associated with a lower marginal value in expectation.

Nevertheless, it is unclear a priori how this affects the comparative statics derived in the ho-

mogeneous case, as the reduced value of members of this group also reduces the significance

of all flow-on effects in the network.

In practice, while it still holds true that members of the minority group receive higher

average transfers unless the groups are approximately equal in size, the impact of fraction-

alization (relative group share) on total expenditure is now conditional on the relative infor-

mation available about both groups, with increased fractionalization associated with higher

transfers when the minority group behaves unpredictably. In addition, while homophily

continues to depress total transfers, it has a highly contingent effect on inequality.

Equilibrium

We begin from the setup of the baseline model, with the distinction that the information

held by candidate k about voter i’s preferences is allowed to vary. In particular, voter i’s

net preference for candidate 1, εi, is now drawn from one of two uniform distributions with

density parameter θi ∈ {θ, θ} with θ > θ. We can think of θi as voter i’s private type, which

is unknown to candidates.

While the candidates do not know which distribution voter i’s net preference was drawn

from, they have common priors and receive signals about each voter’s type mik ∈ {θ, θ} such

that mik = θi with a probability (assumed greater than half) that depends on the voter-

candidate pair. In other words, candidates receive informative signals about the preferences
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of voters and those signals may be more precise for some voters than for others. After

receiving signals mk = (m1k, . . . ,mnk), candidates form posterior beliefs µk = (µ1k, . . . , µnk)

where µik = Pr(θi = θ|mik) and distribute bribes accordingly.

The full derivation of equilibrium behavior under heterogeneous information is similar to

the baseline case and can be found in A.4. Equilibrium bribes can now be expressed as

bik = [u′]
−1

(
1

ci(w, θ, θ;G)

[
γC(w, θ, θ;G) +

1

αkθ̂ik

])
,

where the only difference from the previous section is that bribes rely not only on the

centrality measure ci, but also on candidate k’s belief about voter i’s type, θ̂ik := Eµik [θi].

Since each candidate’s posteriors are equal to their priors in expectation (Kamenica and

Gentzkow 2011), they will act according to their (common) priors on average. Therefore, it

is necessarily true that E[θ̂i1] = E[θ̂i2] = θ̂i for each voter i.

Now, because one candidate may have more informative signals than the other, it no

longer holds true that otherwise identical candidates will choose the same offers. For a given

network, the candidate with more accurate signals will be more responsive to the realized

voter types, which means they will have an advantage over their opponent in the sense

that they can better anticipate whether they should spend more or less on specific voters.

However, as long as each candidate has well-specified prior beliefs about voter types, then

both candidates will spend the same amount on each voter on average.27

Further, the baseline model’s result on electoral outcomes continues to hold for any

realization when candidates have the same quality of information. By introducing an in-

formational advantage to one candidate, the better-informed candidate should be able to

improve their electoral performance in expectation by more precisely allocating bribes to

the voters with the greatest marginal return. To the extent that signal structure depends

27 It is straightforward to see that this depends on the assumption of a common prior distribution from which

θi is drawn. If candidates hold heterogeneous priors about voter types or if types are candidate-specific,

then divergence will occur on average. Our results are essentially unaffected by this modification since we

focus on a single candidate.
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on group membership, therefore, candidates can benefit electorally from a greater share of

voters in their own group due to the more efficient targeting this permits.

Comparative Statics

A natural question is how the information available to candidates relates to the structure of

society. There are two main sources of variation in information: cross-group differences in

the prior distribution of types and network-dependent variations in posterior information.

In this section, we study the first type of variation analytically, while Appendix C examines

the impact of network dependencies through simulations.

We begin by assuming without loss of generality that θ̂1 < θ̂2. This may be interpreted

as reflecting a difference in prior distributions across groups, affecting both candidates sym-

metrically. Applying the same approach as for the baseline model,28 we can recover explicit

expressions for centrality:

Proposition 4 (Centrality Under Heterogeneous Information). For n sufficiently large, the

centrality of a voter in group 1 and 2 is asymptotically equivalent to

c1 =
δ
(
−θ̂1 + θ̂2 − 1

)
+ (δ − 1)s2

(
δθ̂1 + δ + θ̂2 − 1

)
− s

(
δ2(θ̂1 + 1)− 2δ(θ̂1 − θ̂2 + 1)− θ̂2 + 1

)
ns((δ − 1)s− δ)(−θ̂2 + s(δ + θ̂2 − 1) + 1)

and

c2 =
δ −

(
(δ − 1)s2(δθ̂2 + δ + θ̂1 − 1)

)
+ s

(
δ2(θ̂2 + 1)− 2δ − θ̂1 + 1

)
n(s− 1)((δ − 1)s+ 1)(s(δ + θ̂1 − 1)− δ)

,

respectively, with probability approaching 1.

Intuitively, office motivations once again increase total candidate spending and the public

cost of diverting resources reduces total candidate spending.

Proposition 5 (Bribes Under Hetergeneous Information). ∂B
∂α

> 0 and ∂B
∂γ

< 0.

28See Supplemental Materials for details and code.
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However, due to the greater complexity of these expressions, it is no longer feasible to

provide explicit characterizations for most of the main comparative statics—typically, the

sign of the relevant derivatives depends nonlinearly on the four parameters s, δ, θ̂1, and θ̂2.

In this section, we therefore adopt the approach of evaluating each derivative at a fine grid

of points in (s, δ, θ̂1) space, holding θ̂2 constant at a range of values, assuming without loss

of generality that θ̂1 < θ̂2. In Figures 2 and 3, we show the regions over which the main

quantities of interest take positive and negative values assuming a moderate value θ̂2 = 1
4
,

while corresponding figures for other values of θ̂2 can be found in Appendix B.

Unlike in the constant-information case, changes in parameters no longer have uniform

effects. A clear illustration of this change from the baseline result can be seen in Figure 2a,

which shows the effect of an increase in the size of group 1 on total expenditure. Whereas

under homogeneous information an increase in the size of the majority group (greater frac-

tionalization) always increases expenditures (see Proposition 2), this need not necessarily be

the case when information varies by group. In particular, when the less predictable (lower

θ̂`) group is in the minority, an increase in its size (reduction in fractionalization) can now

lead to an increase in total expenditure, provided that its average posterior is sufficiently

low. This is driven by a relatively higher rate of substitution into transfers to the majority

group: as group sizes approach equality, members of the majority become relatively more

valuable, while the increased number of cross-group ties offsets the reduction in transfers to

the minority.

Finally, we consider the effect of a decrease in the level of homophily in the network

(increase in δ), shown in Figures 2b and 3b. As in the baseline model, decreasing levels of

homophily are uniformly associated with increases in expenditure unless both θ̂` are suffi-

ciently high and fractionalization is also high (see Appendix B for examples, since this only

occurs for higher values of θ̂2). In other words, for an increase in homophily to be associ-

ated with an increase in spending, it is necessary that the corresponding relative decrease

in cross-group ties actually be associated with an increase in the value of transfers to at
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(a) Change in share of group 1, ∂B
∂s

(b) Change in homophily, ∂B
∂δ

Figure 2: Effects of changes in social structure on total transfers given heterogeneous infor-
mation by group with θ̂2 = 0.25. The x-axis is given by s ∈ [0, 1], the y-axis by θ1 ∈ [0, θ2],
and the z-axis by δ ∈ [0, 1], with a positive derivative given by blue and a negative derivative
by red. A positive change in δ corresponds to a reduction in homophily, so that Panel (b)
should be interpreted as showing that greater homophily leads to a reduction in transfers.

least one group. Intuitively, this relies on two conditions: (1) the proportion of possible

cross-group ties is sufficiently low that a marginal reduction in their probability does not

have too large an effect and (2) the members of at least one group have sufficiently high

θ̂` and are sufficiently numerous that, on average, ties within that group are more valuable

than cross-group ties.

The relationship between homophily and inequality, shown in Figure 3b, is contingent.

Similarly to the baseline model, when the less-predictable group (here, group 1) is in the

majority, increases in homophily are generally associated with decreases in inequality. As

the quality of information for group 2 improves, this exceptional range appears mostly when

δ and θ̂1 are both close to 1, corresponding to high predictability and low homophily. In this

region, low-level increases in homophily have the effect of further increasing c2 and decreasing

c1, exacerbating the existing inequality by weakening the equalizing effect of cross-group ties.

By contrast, when group 1 is the minority (and receiving higher average transfers), it is
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(a) Change in share of group 1, ∂Q
∂s

(b) Change in homophily, ∂Q
∂δ

Figure 3: Effects of changes in social structure on group inequality given heterogeneous
information by group with θ̂2 = 0.25. The x-axis is given by s ∈ [0, 1], the y-axis by
θ1 ∈ [0, θ2], and the z-axis by δ ∈ [0, 1], with a positive derivative given by blue and a
negative derivative by red. A positive change in δ corresponds to a reduction in homophily.

now possible for increases in homophily to cause increases in inequality even at low values of δ

and θ̂1. While increased homophily may increase c1 if s is sufficiently close to 0 and δ to 1, for

most parameter combinations increases in homophily decrease both c1 and c2 due to the loss

of cross-group ties. However, when group 1 members are unpredictable compared to group

2 members, the net effect is to decrease c2 by more than c1, as members of the majority

lose more total influence than do members of the minority. There are many parameter

combinations that generate this effect, however, indicating that when the smaller group is

also the less predictable electorally, the effects of homophily on inequality of transfers are

generally ambiguous, while still tending to decrease inequality overall.

Discussion of Assumptions and Limitations

While the model presented in this paper is general in the sense that it applies to any form

of targeted inducements made to connected agents in the presence of positive spillovers,
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the results depend on a number of assumptions and modeling choices that warrant further

discussion. In this section, we consider these assumptions in detail, beginning with the

baseline (fixed-graph) model before discussing the network formation process underlying our

main results on social structure.

Baseline Model

In the baseline model, we normalize the total incoming social influence of each voter to

one. While we consider the consequences of flexibly relaxing this assumption in Appendix

A.5, this specification is preferred for several reasons. First, this modeling choice reflects a

desire to focus on the effect of the information environment: the standard approach without

normalization implies that the marginal impact of an additional social tie is independent of

a voter’s degree, which is inconsistent with rational learning. Our approach, while short of

a game with information transmission, nevertheless reflects an underlying assumption that

voters aggregate across all of the information available to them.

The alternative un-normalized formulation has several implications which we view as

unnatural in this context. First, as the size of a voter’s neighborhood increases, the relative

weight placed on their own utility converges to zero, which is inconsistent with findings on

peer effects in voting (Green and Gerber 2010) and with studies of online social networks,

which typically indicate the reverse relationship (Jang, Lee, and Park 2014). Second, the

converse also holds: voters with only a small number of connections are only negligibly

influenced by their neighbors, which is again inconsistent with findings of powerful peer

effects for all voters (Lazer et al. 2010). It is possible, however, that in some applications

the total amount of social influence may depend on degree (e.g., if both are driven by latent

sociability). We take up this possibility in Appendix A.5.

Further, we choose to focus on a setting without an up-front commitment problem char-

acteristic of one-off exchanges of cash for votes whereby voters have an incentive to defect,

taking payments from all candidates and voting for their ex ante preferred option regardless
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of the amounts received. As noted above, we do so because existing research has provided

extensive evidence on the ways it is overcome in practice through social norms and rela-

tionship maintenance. Moreover, in many forms of clientelistic redistribution, such as the

provision of public sector employment, this enforcement problem is essentially absent (Frye,

Reuter, and Szakonyi 2019). By partially abstracting away from this aspect of the commit-

ment problem, we are therefore able to focus on the role of social networks in the diffusion of

voter attitudes, rather than purely as a means for candidates to learn about the identities of

reciprocal voters as in Duarte, Finan, Larreguy, and Schechter (2019). While the question of

what features of social structure best facilitate peer-monitoring through mechanisms other

than pure peer pressure is undoubtedly of tremendous interest, it falls essentially outside the

scope of this paper.

Lastly, we impose that social spillovers are positive. In principle, it is plausible for

weights to be negative for some connections. Under ethnic patronage, for example, voters

may interpret the intention of an out-group member to vote for a candidate as a sign that

they should not do so, leading to a negative weight (Boda and Néray 2015). If we were to

allow for negative weights, the main results of our model would be essentially unchanged since

our centrality measure extends straightforwardly to the case of negative weights (Everett and

Borgatti 2014), but we focus on the strictly positive case in the main text to avoid corner

solutions, where negative spillovers outweigh positive for some voters.

Network Formation

The goal of this paper is to understand the role of social structure on redistributive strategies

and their outcomes. As such, it is necessary to impose a parametric model of network forma-

tion that allows us to study the effects of basic elements of social structure in a transparent

way. Consequently, we assume that the network is generated according to a stochastic block

model.

Although a simplification of real network formation dynamics, stochastic block models
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have been consistently shown to perform well in approximating real social networks, espe-

cially with regard to community structure and local clustering (Ghasemian, Hosseinmardi,

and Clauset 2019; Vaca-Ramı́rez and Peixoto 2022). The key simplification associated with

the choice is the assumption of conditional independence of tie formation, which limits its

ability replicate micro-level structures found in empirical networks that arise because the

existence of a tie between individuals also increases the likelihood of ties between their mu-

tual friends (e.g., clique formation). While micro-structure of this kind is important for

individual targeting decisions, however, its relevance to high level strategic decisions made

by political actors is less clear in comparison to easily observed factors such as group share

or inter-group relations. Importantly for the present application, moreover, they provide a

simple and transparent parameterization of two key features of social networks—the baseline

propensity to form ties, and the degree of in-group preference—which permits direct consid-

eration of the role of structural features of interest without the introduction of extraneous

parameters.

Stochastic block models can be thought of as the paradigmatic case of a class of random

network formations that build on the basic Erdos-Renyi model of independent tie formation

(Newman, Watts, and Strogatz 2002). A number of other models exist that share this same

basic structure, notably as the latent space models that have proven useful in empirical

studies of networks (Breza, Chandrasekhar, McCormick, and Pan 2020). An advantage of

such models over the approach used in this paper is that they are capable of encoding dyadic

features that go beyond membership in a single group, and may thus perform better in

prediction tasks. However, this comes at the cost of a far more complex parameterization

that would obscure our main focus: studying the effect of the core elements of social structure.

Similarly, a variety of network formation models relax the requirement of conditionally

independent tie formation, explicitly introducing local dependence into the process. These

models can exceed the predictive performance of stochastic block models in capturing real-

world social networks (Jackson 2010; Schweinberger and Handcock 2015), but they are far
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more heavily-parameterized and incorporate additional elements that are not clearly essential

to the core features of homophily, fractionalization, and density that form the central focus

of this paper. Nevertheless, we view the application of such network formation models,

shifting the focus from network-level to local structure, as an interesting and important step

for future research.

Conclusion

In this article, we provide a formal model of elections in which candidates may offer private

transfers to policy-motivated voters connected on a social network, where each voter has

a politically salient group identity and transfers come at the expense of a public good.

The incorporation of network effects raises the marginal value of transfers to central voters,

resulting in diversion of public resources that may greatly exceed the amount voters would

prefer absent social pressure. Candidates prefer to make offers to voters who are connected

to many easily-influenced neighbors, not simply to those with high degrees.

Our analytical framework allows us to overcome a major limitation of many network

models: the need to begin by taking a highly complex discrete graph structure as granted. By

employing techniques from spectral random graph theory to study the role of social structure,

we are able to explicitly characterize expected equilibrium strategies, which almost surely

approximate behavior in large societies. Further, our approach allows us to derive sharp

comparative statics from which we can systematically compare variation in outcomes across

societies based on stable underlying features of the social environment, without needing to

observe a complete network in each case of interest.

Particularly noteworthy are our findings regarding network density and homophily. Con-

trary to arguments frequently found in the literature, density of ties relates to the level of

group inequality and total spending only indirectly, through its association with inter-group

interactions or candidate information. Homophily, meanwhile, actually decreases both for
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non-extreme parameter values. Similarly, in line with recent reevaluations of the ethnic

diversity-public good provision connection (Singh and Vom Hau 2016), we find that candi-

dates actually face the strongest incentive to siphon public resources for targeted inducements

under low fractionalization with high levels of social integration. Another implication of the

model is that candidates will tend to disproportionately target minority group members re-

gardless of their own group affiliation, although this incentive can be offset by a systematic

informational advantage with respect to in-group members.

When candidates have heterogeneous information about voters, fractionalization can pro-

mote targeted strategies when not much is known about minorities but reduces inequality

in almost all contexts. Homophily, on the other hand, typically reduces spending but has a

nonlinear relationship with the degree of inequality among groups. A more general contri-

bution of the model with heterogeneous information is its implications for the dilemma of

targeting swing versus core voters (Calvo and Murillo 2004; Stokes 2005). Here, swing vot-

ers are not necessarily those who are close to indifference, but instead those who have high

variance in their random preference shock (i.e., θi = θ). From the candidate’s perspective,

in other words, a strategically significant feature of swing voters is that their behavior on

election day is difficult to predict, whether due to inherent features of the voters themselves

(such as limited interest in politics) or a lack of knowledge by the candidate.

This perspective becomes particularly relevant when considering the role of the network,

as when the type distribution correlates with observable group characteristics, swing or

reciprocal voters may not only be high types themselves, but also connected to many other

high types. Our model therefore indicates that a previously overlooked tradeoff for candidates

is the extent to which they can be certain of positive spillovers from targeting specific social

groups. These findings suggest that the social position of the most efficiently influenced

voters should also be considered; targeted redistribution may not only rely on individual

characteristics, but also on the way voters are embedded in society.

The somewhat surprising result that, holding all else constant, an increase in the number
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of ties in the network does not alter the optimal strategy comes directly from the tradeoff

candidates face between seeking out the best-connected voters and those that have the

greatest influence over others, i.e., those that are connected to many relatively isolated

voters. A counterfactual increase in density in a given society—that is, a symmetric increase

in the connection probabilities of all voters—will not affect centrality (and hence transfers)

since the increased number of connections is exactly offset by the reduction in the influence

of each individual tie. This remains true even when accounting for diverging quality of

candidate information, unless information structures are directly reliant on the underlying

social network. The significance of this finding is that density in itself does not necessarily

matter for the reasons it is frequently assumed to. Simply adding more ties to a network

does not in itself have an effect on strategic behavior unless accompanied by a change in the

strength of those ties.

These results have direct implications for redistributive strategies in a variety of polit-

ical settings. For instance, we predict the most intensive targeted redistribution to occur

in social contexts with a large majority and small minority but with relatively low levels

of social segregation. At the same time, members of the minority group are likely to ben-

efit disproportionately from private provision, especially when candidates are well-informed

about voter preferences. In the absence of strong in-group preferences, this will tend to occur

regardless of the group affiliation of those dispensing resources and may lead to targeting

voters that ex ante prefer the opposition.

While a lack of fine-grained comparative data on social network structure in locations

where redistribution of this kind occurs makes it difficult to evaluate many of these predic-

tions directly, the main observable implications of our model are borne out by the empirical

literature. In Romania, for instance, vote buying tends to be particularly prevalent in areas

with a large Romanian majority and small minority of moderately integrated Roma, but to

a much lesser degree in areas with concentrated and isolated Hungarian minorities (Mares

and Young 2019). Similarly, clientelism in contexts as diverse as Ukraine (Schlegel 2021)
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and Kenya (Gutiérrez-Romero 2014) tends to be organized around identifiable ethnic groups,

with candidates targeting minorities, even out-groups.

Perhaps the most important implication of these findings is that empirical work on elec-

toral clientelism and distributive politics should not ignore or take for granted the role of so-

cial network structure as a determinant of electoral strategy. While it is now well-established

that network position affects individual targeting, variations in meso- and macro-level fea-

tures of social networks, especially homophily and information structures, strongly shape the

strategic environment. Moreover, we suggest that density of ties should neither be assumed

a defining feature of ethno-political groups nor necessarily a primary determinant of the

effectiveness of clientelism, further demonstrating the value of explicitly modeling network

dependence.
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A Additional Model Details

A.1 Additional Assumptions

In order for the solution to be well-defined, we must make two assumptions.

Assumption 1. maxbk θ (u(bik) + 1− γ
∑

i bik) <
1
2

for all k.

First, we assume all voters have an interior probability of voting for either candidate for

any transfer profile. Specifically, suppose that i is connected to all other voters on the network

and that all such voters have probability 1 of voting for the candidate. Our assumptions on

u(·) ensure that this is well-defined and is thus equivalent to a condition that θ is sufficiently

small.

Assumption 2. I − 2θÃ is invertible.

Second, we require that the matrix I − 2θÃ is invertible (see Battaglini and Patacchini

(2018) for further discussion of this issue), which is likewise equivalent to assuming that θ

is smaller than 1
2λ1

, where λ1 is the largest eigenvalue of the matrix Ã (Ballester, Calvó-

Armengol, and Zenou 2006), which is guaranteed by normalization to be at most 1. We thus

have as a sufficient condition that θ ≤ 1
2
.
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A.2 Equilibrium Derivation of the Baseline Model

A voter will cast a ballot for candidate 1 if and only if Ui(1) ≥ Ui(2). Here, candidates will

not be able to perfectly anticipate voting behavior due to their imperfect information over

voter preferences. Using equation (1), we can rewrite this as a condition on the size of the

valence shock,

εi ≤ (−1)xi−1 + u(bi1)− u(bi2) +

∑
j∈Ti(G) wij(2φj − 1)∑

j∈Ti(G) wij
+ γ

∑
m∈V

(bm2 − bm1),

where we have denoted φi := φi1(b) = 1−φi2(b) the probability a voter i votes for candidate

1. Noting that εi ∼ U
[−1

2θ
, 1

2θ

]
implies Pr(εi ≤ ε) = 1

2
+ θε, we can correspondingly write

each voter’s probability for voting for candidate 1 (since θ is assumed to be sufficiently small

that these probabilities are interior) as


φ1

...

φn

 =


1
2

+ θ

(
(−1)x1−1 + u(b11)− u(b12) +

∑
j∈T1(G) w1j(2φj−1)∑

j∈T1(G) w1j
+ γ

∑
m∈V

(bm2 − bm1)

)
...

1
2

+ θ

(
(−1)xn−1 + u(bn1)− u(bn2) +

∑
j∈Tn(G) wnj(2φj−1)∑

j∈Tn(G) wnj
+ γ

∑
m∈V

(bm2 − bm1)

)


Here, φ gives the unique vector of vote probabilities given bribe profiles. While each

voter’s utility is subject only to their neighbor’s vote probabilities, this system of equations

necessarily implies that a single voter’s probability of supporting candidate 1 is a function

of all other voter’s probability of supporting 1. This occurs because, for example, a voter i’s

probability φi is affected by i’s neighbor j’s probability φj, which in turn is affected by j’s

neighbor m’s probability φm. Since we rule out disconnected components, φi will both affect

and be affected by all other voting probabilities throughout the entire network.

In equilibrium, each candidate chooses a vector of transfers that maximizes their utility,
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taking the other candidate’s strategy as given. This gives rise to the n first-order conditions,

n∑
j=1

∂φj
∂bik

=
1− λik
αk

where λi is the Lagrangian multiplier associated with voter i’s nonnegativity constraint (see

Battaglini and Patacchini (2018) for an analogous derivation). Differentiating φi with respect

to a bribe from candidate 1 to another voter h, we have

∂φi
∂bh1

= θ

(
u′(bh1)1(i = h) +

2
∑

j∈Ti(G)wijφ
′
j∑

j∈Ti(G) wij
− γ

)
.

Then we can rewrite the candidates’ problem as

(J [u]− Γ)> ·
(
I − 2θÃ

)−1

· 1 =
(1− λ)

αkθ
(6)

where J [·] is a diagonal matrix with u′(bi) as the nonzero entries, Γ is an n×n square matrix

such that every element of Γ is γ, I denotes the identity matrix, 1 denotes an n-vector of 1s,

λ is an n-vector of Lagrange multipliers, and Ã is a normalized weighted adjacency matrix.

Note that by Assumption 2, (I − 2θÃ) is guaranteed to be invertible, so the problem is

well-defined.

A.3 Targeted Redistribution by Policy Rule

Consider a restriction of the model in which candidates simply choose a policy rule for the

assignment of excludable (b) and non-excludable goods. That is, while candidates observe

the aggregate network structure, they lack the technology to make transfers to individual

voters, and must instead commit to a policy rule that assigns transfers to groups of voters

based on observable characteristics. Formally, candidates choose a vector b = {b1, . . . , bL},

where b` is the transfer offered to voters with membership in group `. This case corresponds
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to a wide variety of clientelistic models in which candidates make promises based on coarse

observable factors such as ethnic group or place of residence (Chandra 2007; Vicente and

Wantchekon 2009), while lacking the tightly-controlled broker networks necessary to precisely

target specific individuals (Cruz 2019).

Applying the same approach as in the baseline model, the candidate’s optimal allocation

must satisfy

(JP [u]− ΓP )> ·
(
In − 2θÃ

)−1

· 1 =
(1− λ)

αkθ
(7)

where JP [u] is now an n × L matrix where the i, `th entry is equal to u′(b`) if and only if

`i = ` and 0 otherwise, and ΓP is equal to γn` in every entry in the `th row.29 Then, reading

off the first row of equation (7), we have that

∑
`i=1

(u′(b1k)− γn1)ci −
∑
`j 6=1

γn1cj =
1− λk1

αkθ

or, denoting C`(w, θ;G) =
∑
`i=`

ci(w, θ;G) and C(w, θ;G) =
∑
i

ci(w, θ;G),

b`k = [u′]
−1

(
1

C`(w, θ;G)

[
γn`C(w, θ;G) +

1

αkθ

])
. (8)

It is straightforward to see that in the limiting case where each voter belongs to his or

her own group, this model converges to the baseline. Likewise, in the average network, the

two models are essentially equivalent because candidates make the same offer to every voter

in a group on average, so that are results on social structure are unaffected.

On fixed networks, however, the important observation is that the constraint introduces a

requirement for candidates to take into account not the value of targeting individual voters,

but the total centrality of each group. This means that groups that perform a bridging role

in the overall society, for instance, by serving as a connection between other groups, may

become more attractive targets for redistribution even if no particular member of the group

29This reduces to the perfect targeting case when L = n.
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has especially high centrality.

A.4 Heterogeneous Information (Equilibrium Derivation)

We begin from the setup of the baseline model, with the distinction that the information

held by candidate k about voter i’s preferences is allowed to vary. In particular, voter i’s

net preference for candidate 1, εi, is now drawn from one of two uniform distributions with

density parameter θi ∈ {θ, θ} with θ > θ. We can think of θi as voter i’s private type, which

is unknown to candidates.

While the candidates do not know which distribution voter i’s net preference was drawn

from, they have common priors and receive signals about each voter’s type mi ∈ {θ, θ} such

that mi = θi with a probability (assumed greater than half) that depends on the voter-

candidate pair. In other words, candidates receive informative signals about the preferences

of voters and those signals may be more precise for some voters than for others. After

receiving signals m = (m1, . . . ,mn), candidates form posterior beliefs µ = (µ1, . . . , µn)

where µi = Pr(θi = θ|mi) and distribute bribes accordingly.

Incorporating uncertainty over voter types, we can rewrite the candidates’ problem as

max
bk

αk
∑
i∈V

Eµ[φik(bk, b−k)]− bk · 1

subject to bik ≥ 0 for all i.

Exactly as before, we can write each voter’s probability for voting for candidate 1 as a

function of all other voter’s probability for voting for candidate 1,


φ1

...

φn

 =


1
2

+ θ1

(
V1(b) +

∑
j∈T1(G) w1j(2φj−1)∑

j∈T1(G) w1j

)
...

1
2

+ θn

(
Vn(b) +

∑
j∈Tn(G) wnj(2φj−1)∑

j∈Tn(G) wnj

)
,
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where we denote i’s net preference for candidate 1 short of network effects by Vi(b) for

notational convenience so that

Vi(b) := (−1)xi−1 + u(bi1)− u(bi2) + γ
∑
m∈V

(bm2 − bm1).

Unlike the baseline case, however, candidates maximize an expected utility that now relies on

their posterior beliefs of voter types. In particular, we need to characterize the candidates’

expected vote share conditional on their signals. Using the above equation, this can be

expressed as

Eµ[φi] =
1

2
+ Eµ[θi]Vi(b) +

∑
j∈Ti(G) wij(2Eµ[θiφj]− Eµ[θi])∑

j∈Ti(G) wij
.

For the remainder of this section, we restrict all edge weights to wij = 1 for all i, j ∈ V . This

assumption is without loss of generality as Proposition 1 establishes that, on average for

large n, it is only the ratio wLpL
wHpH

that determines outcomes. Hence, as long as tie formation

probabilities can vary freely, edge weights have no independent effect in the expected network,

which is our focus in this section.

First, note that Eµ[θi] = θ − µi(θ − θ). This can be thought of as the candidate’s net

information about voter i, taking into account both first-order uncertainty about i’s vote

choice and second-order uncertainty over her type. Second, by Lemmas 3 and 4 in the

Appendix, we know that unilateral changes in a particular voter’s type has a negligible

influence on changes in other voter’s vote probabilities as the network grows sufficiently

large; i.e, φj(·|θ : θi = θ) ≈ φj(·|θ : θi = θ) for i 6= j as n→∞. Hence we can conclude that,

asymptotically, Eµ[θiφj] =
(
θ − µi(θ − θ)

)
Eµ[φj]. This allows us to recover n first-order

conditions,

∂Eµ[φi]

∂bh1

=
(
θ − µi(θ − θ)

)(
u′(bh1)1(i = h) +

2
∑

j∈Ti(G) wij[E[φj]]
′∑

j∈Ti(G) wij
− γ

)
.
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Hence it follows as in the baseline model that the optimality condition

(J [u]− Γ)> ·
(
I − 2ΘÃ

)−1

· 1 = Θ−1 · (1− λ)

αk
, (9)

where Θ := θI− (θ− θ)M and M is an n×n diagonal matrix with posteriors µi as nonzero

elements. Equilibrium bribes can therefore be explicitly expressed

bik = [u′]
−1

(
γn+

1

αkθ̂ikci(w, θ, θ;G)

)
,

where the only difference from the previous section is that equilibrium bribes to a voter

i from a candidate k rely not only on their centrality measure ci, now the ith element of

c = (I − 2ΘÃ)−1 · 1, but also on candidate k’s belief about voter i’s type, θ̂ik := Eµ[θi]. By

the law of iterated expectations, since each candidate’s posteriors are equal to their priors

in expectation, they will act according to their (common) priors on average. Therefore, it is

necessarily true that E[θ̂i1] = E[θ̂i2] = θ̂i for each voter i.

Now, because one candidate may have more informative signals than the other, it no

longer holds true that otherwise identical candidates will choose the same offers. For a given

network, the candidate with more accurate signals will be more responsive to the realized

voter types, which means they will have an advantage over their opponent in the sense

that they can better anticipate whether they should spend more or less on specific voters.

However, as long as each candidate has well-specified prior beliefs about voter types, then

both candidates will spend the same amount on each voter on average.

Further, the baseline model’s result on electoral outcomes continues to hold for any

realization when candidates have the same quality of information. By introducing an in-

formational advantage to one candidate, the better-informed candidate should be able to

improve their electoral performance in expectation by more precisely allocating bribes to the

voters with the greatest marginal return. Nonetheless, gains in electoral performance remain

orthogonal to group membership to the extent the informational structure is also orthogonal
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to group membership.

A.5 Degree-Dependent Heterogeneity (Equilibrium Derivation)

Although our preferred specification involves normalization of total social influence to unity,

it is reasonable to suppose that in some settings more-connected voters may be more suscep-

tible to influence from their peers. For instance, if both the propensity to form ties and the

extent to which others’ opinions are taken into account when making decisions are correlated

with intrinsic sociability, then this pattern would be expected to emerge. Alternatively, if so-

cial influence is at least partly a consequence of in-group monitoring and peer pressure, then

the total pressure on highly-connected voters may be more than the sum of the individual

weights due to an increased need to attend to social conformity.

To account for these possibilities, in this section we augment the baseline model with a

weakly increasing total influence function ξ(di) that parameterizes the impact of degree on

susceptibility, where we denote by di =
∑

j∈Ti(G) wij the weighted degree of voter i. It is

straightforward to see that ξ(·) = 1 corresponds to the baseline case, while ξ(d) = d yields

the original un-normalized network. We are therefore interested in the intermediate case

where 1 < ξ(d) < d for any d. We then have


φ1

...

φn

 =


1
2

+ θ
(
V1(b) +

ξ(d1)
∑

j∈T1(G) w1j(2φj−1)

d1

)
...

1
2

+ θ
(
Vn(b) +

ξ(dn)
∑

j∈Tn(G) wnj(2φj−1)

dn

)


It follows from the same argument as before that the optimal solution is determined by

(J [u]− Γ)> ·
(
I − 2θÂ

)−1

· 1 =
(1− λ)

αkθ
(10)

where Â is given by

Âij =
wijξ(di)Aij

di
.
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Under the assumption 1 < ξ(d) < d, it follows from the proof of Lemma 1 and the

associated results in Dasaratha (2020) and Mostagir and Siderius (2021) that we have

limn→∞ Pr(‖c(n)(Â) − c(n)(
¯̂
A)‖ > ε) = 0. Moreover, it is clear that since on the aver-

age network all voters with the same group affiliation share the same expected degree, we

have ξi = ξ`i for all i. Since ξ depends implicitly on all generative parameters via the aver-

age degree, we assume a simple parametric form in order to study how the main results are

affected by this change:

ξ(di) = ξ0 + βdi

or, substituting in for expected degree on the average network,

ξ(di) = ξ0 + βρn (s+ (1− s)δ) .

We then follow the same procedure as in the heterogeneous information case to derive

comparative statics in terms of the structure parameters, with the distinction that ρ now

plays a role. For simplicity of exposition, we fix ξ0 = 1, although results are essentially

unchanged by varying this parameter.

Much as in the baseline model, increases in the value placed on the public good generally

decrease both spending and inequality, while the degree of office motivation of the candidate

also negatively relates to inequality. However, it is no longer necessarily true (see Appendix

B) that more office-motivated candidates spend more, as the increase in the relative value of

highly-connected voters may actually incentivize less spending on targeted transfers in cases

with high homophily and groups of very unequal size.

For the remaining results, we present comparative statics at two fixed parameter levels:

ρ = β = 0.1 and ρ = β = 0.9.30 These correspond, respectively, to a slight relaxation of

the normalization assumption on a sparse network, and to a densely connected network with

almost no normalization. Comparison across the two cases thus provides an indication of

30Since the two parameters appear only as a product, it is uninformative to consider cases where they are

not equal, since, e.g., the solution with ρ = 0.1 and β = 1 is equivalent to that with ρ = β =
√

0.1.
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the consequences of relaxing the assumption.

(a) ∂B
∂s with ρ = β = 0.1 (b) ∂B

∂s with ρ = β = 0.9

(c) ∂B
∂δ with ρ = β = 0.1 (d) ∂B

∂δ with ρ = β = 0.9

Figure 4: Effects of changes in social structure on total transfers given degree-dependent
heterogeneity. Here, ρ = β = 0.1 in Panels (a) and (c) reflects a minimal relaxation of our
normalizing assumption, whereas ρ = β = 0.9 in Panels (b) and (d) show the results ap-
proaching an un-normalized weighting scheme. Recall that a positive change in δ corresponds
to a reduction in homophily.

Figure 4 replicates the main results of the baseline model under flexible normalization.

Notably, the effect of both increases in homophily and fractionalization is partly reversed

from the baseline model with even a minimal level of degree-dependent influence: for most

parameter combinations, both homophily and fractionalization now lead to an increase in

expenditure. This is mostly driven by the increase in value of highly connected individuals in

the absence of normalization—candidates spend the most when they can exploit the division

53



of society into two relatively equal-sized but weakly-connected groups that each have a high

probability of containing some highly-connected individuals.

(a) ∂Q
∂s with ρ = β = 0.1 (b) ∂Q

∂s with ρ = β = 0.9

(c) ∂Q
∂δ with ρ = β = 0.1 (d) ∂Q

∂δ with ρ = β = 0.9

Figure 5: Effects of changes in social structure on group inequality given degree-dependent
heterogeneity. Here, ρ = β = 0.1 in Panels (a) and (c) reflects a minimal relaxation of our
normalizing assumption, whereas ρ = β = 0.9 in Panels (b) and (d) show the results ap-
proaching an un-normalized weighting scheme. Recall that a positive change in δ corresponds
to a reduction in homophily.

Figure 5 shows the analogous results for inequality. While these overlap at times with

those in the baseline model, they are also highly unstable and contingent, reflecting the

added complexity. As with total transfers, however, it is noteworthy that over the greater

part of the parameter space, the effect of homophily is reversed: more homophilous societies

also experience greater inequality, which reflects the superior ability of candidates to exploit
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dense connections within, but not necessarily across, groups.

(a) ∂B
∂ρ

(b) ∂Q
∂ρ

Figure 6: Effects of changes in density of ties on total spending and group inequality given
degree-dependent heterogeneity.

Finally, Figure 6 shows the impact of changes in density, parameterized by ρ, on total

spending and group inequality.31 While, intuitively, an increase in the total proportion of ties

results in greater spending at moderate values, it is important to note that this need not hold

true when the group sizes are unbalanced and a significant degree of homophily is observed.

This is because, in this case, the benefits of additional ties accrue disproportionately to the

majority group, while the small, disconnected minority remains isolated and, reducing the

value of targeted transfers.

While the predictions from the flexibly-normalized model agree with those of the baseline

for many parameter combinations, then, they are also diametrically opposed on several key

points, particularly the impact of homophily on total transfers. Ultimately, which version of

the model’s predictions is more plausible is an empirical question and depends on the extent

to which social influence depends on degree in practice. A key benefit of this extension is thus

to draw attention to the potentially critical importance of this seemingly inconsequential

feature of social interaction for the relationship between non-programmatic spending and

transfers.

31We show here only the case of β = ρ = 0.1, since they are similar in nature at other values.
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A.6 Derivation of Expected Density

The expected density is the expected number of ties within and across each group out of the

total number of possible ties on the network, i.e.

(n− 1) (sn(sn− 1)p̃H + (1− s)n((1− s)n− 1)p̃H + 2s(1− s)n2p̃L)

n

Substituting for ρ = p̃H and δρ = p̃L, and observing that as n→∞, n
n−1
≈ 1, we then have

that

ρ

n− 1
(2ns(δ − δs− 1 + s) + n− 1) ≈ ρ (2s(1− s)(δ − 1) + 1) .

B Additional Tables and Figures

This section includes additional tables and figures for the case of heterogeneous information.

(a) θ̂2 = 0.01 (b) θ̂2 = 0.25 (c) θ̂2 = 0.5

Figure 7: ∂B
∂s

as a function of parameters for varying values of θ̂2. The x-axis is given by
s ∈ [0, 1], the y-axis by θ1 ∈ [0, θ2], and the z-axis by δ ∈ [0, 1]. Color shading is blue if
∂B
∂s
> 0 and red if ∂B

∂s
≤ 0.
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(a) θ̂2 = 0.01 (b) θ̂2 = 0.25 (c) θ̂2 = 0.5

Figure 8: ∂B
∂δ

as a function of parameters for varying values of θ̂2. The x-axis is given by
s ∈ [0, 1], the y-axis by θ1 ∈ [0, θ2], and the z-axis by δ ∈ [0, 1]. Color shading is blue if
∂B
∂δ
> 0 and red if ∂B

∂δ
≤ 0.

(a) ∂B
∂θ̂1

, θ̂2 = 0.01 (b) ∂B
∂θ̂1

, θ̂2 = 0.25 (c) ∂B
∂θ̂1

, θ̂2 = 0.5

(d) ∂B
∂θ̂2

, θ̂2 = 0.01 (e) ∂B
∂θ̂2

, θ̂2 = 0.25 (f) ∂B
∂θ̂2

, θ̂2 = 0.5

Figure 9: Derivatives of total transfers with respect to information as a function of parame-
ters. The x-axis is s, the y-axis is δ, and the z-axis is θ1.

57



(a) θ̂2 = 0.01 (b) θ̂2 = 0.25 (c) θ̂2 = 0.5

Figure 10: ∂Q
∂s

as a function of parameters for varying values of θ̂2. The x-axis is given by
s ∈ [0, 1], the y-axis by θ1 ∈ [0, θ2], and the z-axis by δ ∈ [0, 1]. Color shading is blue if
∂Q
∂s
> 0 and red if ∂Q

∂s
≤ 0.

(a) θ̂2 = 0.01 (b) θ̂2 = 0.25 (c) θ̂2 = 0.5

Figure 11: ∂Q
∂δ

as a function of parameters for varying values of θ̂2. The x-axis is given by
s ∈ [0, 1], the y-axis by θ1 ∈ [0, θ2], and the z-axis by δ ∈ [0, 1]. Color shading is blue if
∂Q
∂δ
> 0 and red if ∂Q

∂δ
≤ 0.
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(a) θ̂2 = 0.01 (b) θ̂2 = 0.25 (c) θ̂2 = 0.5

Figure 12: ∂Q

∂θ̂1
as a function of parameters for varying values of θ̂2. The x-axis is given by

s ∈ [0, 1], the y-axis by δ ∈ [0, 1], and the z-axis by θ1 ∈ [0, θ2]. Color shading is blue if
∂Q

∂θ̂1
> 0 and red if ∂Q

∂θ̂1
≤ 0.
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C Network-Dependent Information

It is natural to think network dependence and candidate information are mutually reinforc-

ing: social connections between brokers and voters are important precisely because they

provide information about voter preferences, facilitating more accurate targeting (Finan and

Schechter 2012; Stokes et al. 2013). In this section, we therefore consider a special case of the

heterogeneous information model in which candidates’ posterior beliefs about voter behavior

depend on their position in the network.

We now place the candidates on the network and assume that a voter’s type θi depends

on their position on the network. If voters whose shortest-path distance from a candidate is

lower have a higher probability that θi = θ, then a systematic relationship will exist between

i’s probability of connecting with candidates pik and their average posterior information θ̂i.
32

In contrast to previous results, density may have a direct effect, as increases in edge

density will increase the likelihood of all voters being type θ through a decrease in their

expected distance from any candidate, which will directly affect candidates’ posterior beliefs

and the corresponding equilibrium bribes. Consequently, changes in density will now affect

expected equilibrium behavior by changing the prior distribution of types. Although θi = θ

symmetrically increases a voter’s value to both candidates, equilibrium electoral outcomes

may be affected if candidates enjoy systematically more precise information about socially

proximate voters. In the two-candidate case, candidates will not only target their own close

neighbors but also their opponent’s, since both are associated with higher posteriors.

For this reason, we focus on the one-candidate case, which arises naturally in many

applications. For example, vote brokers typically rely heavily on personal connections with

voters, as the preferences of more socially distant voters are less legible, and only one agent

typically makes offers in a given locality (Stokes et al. 2013; Holland and Palmer-Rubin

2015).

32Since θi measures the predictability of a voter’s behavior given their observable characteristics, it is plau-

sible that voters who are more connected to political candidates will vote more consistently.
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Figure 13: Average transfers from candidate 1 by group as a function of group 1’s share (s),
by homophily (δ).

Figures 13 and 14 show the results of model simulations. Since the asymptotic results

in the preceding section require independence between θi and pij, we take the approach of

estimating E[bi] on a finite network directly through 1,000 repeated draws of networks from

the stochastic block model. For each combination of parameters, we calculate the average

transfers to members of each group, b̄` = E[bi|`i], the overall inequality, Q =
(
b̄1 − b̄2

)2
, and

the total transfers B =
∑

i bi at each draw. Estimates are then calculated as the average

across all draws, along with bootstrapped 95% percentile confidence intervals.

Since our focus is primarily on social structure, we repeat the process over a grid of

values between 0 and 1 for each of δ = pL
pH

and s = n1

n
, which govern homophily and

fractionalization. To reduce the computational burden, the remaining parameters are held

constant at moderate values of n = 200, α1 = α2 = 1, γ = 1
400
, u(b) = 200 ln(b), while we

assume for simplicity that candidate k’s information decays in social distance according to

a power law, θ̂i = 2−d(i,k).
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Figure 14: Total transfers from candidate 1 as a function of group 1’s share (s), by homophily
(δ)

Figure 15: Inequality of average transfers from candidate 1 as a function of group 1’s share
(s), by homophily (δ)
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As Figure 13 demonstrates, the introduction of network dependence in a one-candidate

environment introduces a distinct element of in-group favoritism, consistent with empirical

observations across a variety of settings. As might be expected, this favoritism is entirely

driven by homophily: when δ is close to 1 (low homophily), the two groups receive almost

identical amounts on average, with consistently large differences emerging only when ho-

mophily is quite extreme. Intuitively, preference for the candidate’s own group members

is driven by lower social distance on average, amplified by greater separation between the

groups, which leads to higher confidence that bribes to them will lead to an increase in

vote share. In contrast to the independent case, this tendency to favor in-groups completely

outweighs the preference for minorities. While the relative size of the groups has little effect

on average on transfers to out-group members, when homophily is large transfers to the

in-group are sharply increasing in group size. Under homophily, an increase in the size of

the in-group further decreases the expected shortest path distance, thus raising the value of

transfers to all group members. As a consequence, this also tends to increase the level of

inequality (Figure 15) as more funds are diverted to the candidate’s in-group members.

As can be seen in Figure 14, however, this effect is insufficient to completely offset the

overall loss in network spillovers induced by an increase in homophily. While, for a given

value of δ, expenditure on private transfers is highest when s → 1, driven by increases in

in-group spending, it is also increasing in δ for all values of s. In fact, as s approaches 1, the

probabilities converge to the same values as when δ = 1, so that in either case the candidate

is, on average, as close as possible to all voters.

When information depends on network structure in this way, therefore, we would expect

the greatest diversion of funds from public to private goods in societies that are either

perfectly homogeneous or have minimal levels of social segregation.
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D Supplementary Propositions and Proofs

The following lemma allows us to make asymptotic statements that will hold with high

probability and therefore justifies the analysis of the expected, rather than the realized,

network in the context of large elections.

Lemma 1. Under the assumptions of Theorem 1, in addition to assuming that the minimum

expected degree
¯
dn grows at a rate greater than ln(n) and that the expected Laplacian matrix

has second-smallest eigenvalue bounded away from zero, for any ε > 0, limn→∞ Pr(‖c(n)(Ã)−

c(n)( ¯̃A)‖ > ε) = 0.

Proof of Lemma 1. Let G(n) be a sequence of random graphs over n vertices, and denote

by δ(n) the smallest expected weighted degree, i.e., δ(n) = mini
∑

j w
(n)
ij p

(n)
ij . Further, let

w̄(n) = maxi,j w
(n)
ij and

¯
w(n) = mini,j w

(n)
ij be the largest and smallest individual weights,

satisfying
w̄(n)

¯
w(n)
≤ ω for some ω > 0 for all n. Then if there exists a non-decreasing sequence

of k(n) > 0 such that δ(n) ≥ k(n) ln(n) and
¯
w(n) · w̄(n) = o

(√
δ(n)

ln(n)

)
, then the realized

centrality vector centrality vector c(n)(Ã) is with high probability close to the centrality of

the average graph c(n)( ¯̃A) for large n.

Under the stated assumptions, we can apply Theorem 1 to conclude that for any ξ > 0,

for all n we have

Pr

(
||LW − L̄W || ≤ 4

√
3ω ln(4n/ξ)

δ

)
≥ 1− ξ

Furthermore, by the assumption on the growth rate of the minimum degree, limn→∞ 4
√

3ω ln(4n/ξ)
δ

=

0 regardless of the ξ chosen, so that under the 2-norm,

LW →
p
L̄W

Now, for convenience call B = I −LW and B̄ the expected equivalent. Now clearly also
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B →
p
B̄, and furthermore we can write B = D−1/2AWD

−1/2 = D−1/2ÃD1/2. So we can

write, using properties of matrix norms (abusing notation in the second step slightly so that

the maximum is over the norm of the matrices) and the above result,

lim sup
n→∞

‖Ã− ¯̃A‖ = lim sup
n→∞

‖D1/2BD−1/2 − D̄1/2B̄D̄−1/2‖

≤ lim sup
n→∞

‖max
{
D1/2, D̄1/2

}
(B − B̄) max

{
D−1/2, D̄−1/2

}
‖

≤ lim sup
n→∞

max
{
‖D1/2‖, ‖D̄1/2‖

}
‖B − B̄‖max

{
‖D−1/2‖, ‖D̄−1/2‖

}
≤ lim sup

n→∞
ξmax

{
‖D1/2‖, ‖D̄1/2‖

}
max

{
‖D−1/2‖, ‖D̄−1/2‖

}

Now since ξ can be chosen to be arbitrarily small, it is sufficient to establish that both

‖D1/2‖2‖D̄−1/2‖2 and ‖D1/2‖2‖D̄−1/2‖2 are bounded by a constant almost surely. To see

that they are, observe that

‖D1/2‖2‖D̄−1/2‖2 =

√√√√√√√
max
i

∑
j

wijaij

max
i

∑
j

wijpij
≤
√
w̄(n)

¯
w(n)

max
i

√∑
j aij∑
j pij

≤
√
ωmax

i

√∑
j aij∑
j pij

and similarly

‖D1/2‖2‖D̄−1/2‖2 =

√√√√√√√
max
i

∑
j

wijpij

max
i

∑
j

wijaij
≤
√
w̄(n)

¯
w(n)

max
i

√∑
j pij∑
j aij

≤
√
ωmax

i

√∑
j pij∑
j aij

But since the aij are distributed Bernoulli(pij), (see, e.g., Mostagir and Siderius (2021)) both

maxi

√∑
j pij∑
j aij

and maxi

√∑
j aij∑
j pij

converge in probability to 1, so that we have for any ξ > 0

lim sup
n→∞

‖Ã− ¯̃A‖ ≤ ξ
√
ω
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That is, the weighted adjacency matrix can be made arbitrarily close to its expected coun-

terpart.

We now wish to show that, for arbitrary ε > 0,

lim
n→∞

Pr(‖(I − θÃ)−1 − (I − θ ¯̃A)−1‖ ≥ ε) = 0

The key observation is that the above result implies that for any µ > 0, there exists

sufficiently large n such that with probability approaching 1, ‖Ãk− ¯̃Ak‖ ≤ µ for all k. Then

it is straightforward to note that (since by model assumptions we have θ < 1, so the formula

for infinite geometric series can be applied),

lim sup
n→∞

‖(I − θÃ)−1 − (I − θ ¯̃A)−1‖ = lim sup
n→∞

∥∥∥∥∥
∞∑
k=0

θk
(
Ãk − ¯̃Ak

)∥∥∥∥∥
≤ lim sup

n→∞

∞∑
k=0

|θk|
∥∥∥(Ãk − ¯̃Ak

)∥∥∥
≤

∞∑
k=0

µ|θk|

=
µ

1− θ

Since µ was chosen arbitrarily, this implies that for any ε > 0,

lim
n→∞

Pr(‖c(n)(Ã)− c(n)( ¯̃A)‖ > ε) = 0

Finally, note that θ > 0 and the assumption on the eigenvalues of the Laplacian guaran-

tee that the expected adjacency matrix has non-vanishing spectral gap, implying that the

network is connected with high probability, so that the centrality is well-defined (Dasaratha

2020; Mostagir and Siderius 2021), completing the proof.

Lemma 2 (Chung and Radcliffe (2011)). Let X1, . . . ,Xm be bounded independent random

Hermitian matrices and set M > 0 : ||X i − E(X i)||2 ≤ M ∀i = 1, . . . ,m. Then for any
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a > 0,

Pr(||X − E(X)||2 > a) ≤ 2n exp

(
− a2

2v2 + 2Ma/3

)
where X =

∑m
i=1X i and v2 = ||

∑m
i=1 V(X i)||.33

The following theorem is an extension of Theorem 2 from Chung and Radcliffe (2011),

which applies only to unweighted graphs, to symmetrically weighted graphs. Theorem 1

allows us to place tight bounds on the deviation of the realized normalized weighted adjacency

matrix from its expected counterpart. A limitation of this result is that the bound depends

on n and can thus be arbitrarily loose in large societies.

Theorem 1. Let G be an undirected random graph such that all edge formation probabilities

are jointly independent. Denote by A the adjacency matrix, W a symmetric matrix of

weights, and AW the weighted adjacency matrix, such that AW = W � A.34 Let DW

be the diagonal degree matrix such that {D̄W}ii =
∑

j wijaij, and denote by Ā, D̄W the

expected equivalents. Finally, let LW = I −D−1/2
W AWD

−1/2
W denote the normalized weighted

Laplacian of G, ω = maxi,j wij be the largest total weight, α = mini,j wij the smallest, and

δ = mini{D̄W}ii the smallest expected degree.

For any ε > 0, there exists a k > 0 such that, for all i,

Pr

(
||LW − L̄W || ≤ 4

√
3ω ln(4n/ε)

δ

)
≥ 1− ε

if
¯
d > k ln(n) and αω ≤

√
δ

3 ln(4n/ε)
, where α is the smallest total weight.35

Proof of Theorem 1. Denote d̄i as the expected (weighted) degree of node i. By the triangle

inequality, for any matrix C,

||LW − L̄W || ≤ ||C − L̄W ||+ ||LW −C||
33See Theorem 5 in Chung and Radcliffe (2011) for the proof.
34Note that � indicates the Hadamard (element-wise) product.
35Note that this is distinct from α in candidate utility.
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In particular, let C = I− D̄−1/2
W AWD̄

−1/2
W . Then since the degree matrices are diagonal,

we have C − L̄W = D̄
−1/2
W (AW − ĀW )D̄

−1/2
W . Denoting by Aij the matrix that is equal to

1 in the i, jth and j, ith positions and 0 elsewhere, we can use the symmetry of weights to

write the i, jth entry of C − L̄ as

X ij = D̄
−1/2
W (wij(aij − pij)Aij)D̄

−1/2
W =

wij(aij − pij)√
d̄id̄j

Aij

Then clearly C − L̄ =
∑
X ij, so Lemma 2 applies. Since E(aij) = pij, we have that

E(X ij) = 0, so that v2 = ||
∑

E(X2
ij)||. Also, each X ij is bounded above by ‖X ij‖ ≤ ω

δ

Now clearly

E(X2
ij) =


w2

ij

d̄id̄j
(pij)(1− pij)(Aii + Ajj) i 6= j

w2
ii

d̄2i
(pij)(1− pij)Aii i = j

Now we can write

v2 =

∥∥∥∥∥
n∑
i=1

n∑
j=1

w2
ij

d̄id̄j
(pij)(1− pij)Aii

∥∥∥∥∥
= max

i

(
n∑
j=1

w2
ij

d̄id̄j
(pij)(1− pij)

)

≤ max
i

(
ω

δ

n∑
j=1

wij
d̄i

(pij)

)

=
ω

δ

For notational convenience denote a =
√

3ω ln(4n/ε)
δ

and δ so that a < 1. In particular, we

must have δ > 3ω(ln(4)+ln(n)− ln(ε)), so that if k ≥ 3ω(1+ln(4/ε)), δ ≥ k ln(n) guarantees
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the result. Then from Lemma 2

Pr(‖C − L̄W‖ > a) ≤ 2n exp

(
−

3nω2 ln(4n/ε)
nδ

2nω2/δ + 2anω2/3δ

)

= 2n exp

(
−

3nω2 ln(4n/ε)
δ

2nω2(3 + a)/3δ

)

= 2n exp

(
−9 ln(4n/ε)

6 + 2a

)
≤ 2n exp

(
−9 ln(4n/ε)

9

)
=
ε

2

Now for the second term, note that di is a sum of random variables that are bounded

between 0 and ω. Then by Hoeffding’s Inequality, we have that, for any t,

Pr(|di − d̄i| > td̄i) ≤ 2 exp

(
−t

2d̄2
i

nω2

)
≤ 2 exp

(
−t

2δ2

nω2

)
Now in particular let t =

√
nω2 ln(4n/ε)

δ2
=
√

nω
3δ
a. We have t < a < 1 if δ > nω

3
. In our

application, ω = ρH , δ = n0pLρL + n1pHρH ., so that for all i we obtain

Pr(|di − d̄i| > td̄i) ≤
ε

2n

Now note that

∥∥∥D̄−1/2
W D

1/2
W − I

∥∥∥
2

= max
i

∣∣∣∣∣
√
di
d̄i
− 1

∣∣∣∣∣
To bound this, note that from (D) we can conclude that Pr

(∣∣∣did̄i − 1
∣∣∣ > t

)
≤ ε

2n
and

hence with probability at least 1− ε
2n

,

∥∥∥D̄−1/2
W D

1/2
W − I

∥∥∥
2
<

√
nω2 ln (4n/ε)

δ2
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Finally, note that since ‖L‖2 ≤ 2 (Chung and Graham 1997), we have ‖I − L‖2 ≤ 1.

Now consider

‖LW −C‖ = ‖I −D−1/2
W AWD

−1/2
W − I + D̄

−1/2
W AWD̄

−1/2
W ‖

= ‖(I −LW )D̄
−1/2
W D

1/2
W D

−1/2
W AWD

−1/2
W D

1/2
W D̄

−1/2
W ‖

= ‖(I −LW )D̄
−1/2
W D

1/2
W (I −L)D

1/2
W D̄

−1/2
W ‖

= ‖(D̄−1/2
W D

1/2
W − I)(I −LW )D

1/2
W D̄

−1/2
W + (I −L)(I −D1/2

W D̄
−1/2
W )‖

≤ ‖D̄−1/2
W D

1/2
W − I‖‖D

1/2
W D̄

−1/2
W ‖+ ‖I −D1/2

W D̄
−1/2
W ‖

≤ t2 + 2t

Hence, finally,

||LW − L̄W || ≤ ||C − L̄W ||+ ||LW −C||

≤ a+
nω

3δ
a2 +

√
4nω

3δ
a

= a

(√
3δ + 2

√
nω√

3δ
+
nω

3δ
a

)

= a

(
1 +

2
√

3nωδ + nωa

3δ

)

Now, choose k > 1 such that

δ ≥ 1

3

(
2nω

√
k + k + 1

(k − 1)2

)
.

Proof of Proposition 1. By the result established in Lemma 1, it is sufficient to consider

centrality on the average network. Under the stochastic block model, letting si denote the

share of i’s group without loss of generality, we have that the expected degree of i can be
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written as

n∑
j=1

wijpij = sinwHpH + (1− si)nwLpL = n (wLpL + si(wHpH − wLpL)) , 36

For notational convenience, we denote wHpH = ρ, wLpL = δρ for some 0 < δ < 1. The key

observation is that the actual value of ρ is irrelevant, since it appears in both the denominator

and numerator of each entry of the expected adjacency matrix. Thus, all results depend only

on δ, the relative expected weight placed on out-group connections.

Note now that we can write the matrix I−2θ ¯̃A as a 2×2 block matrix with blocks ¯̃A11 =

I − 2θ
n(δ+s1(1−δ)) (1s1n×s1n − I), ¯̃A12 = − 2θδ

n(δ+s1(1−δ))1s1n×s2n, ¯̃A21 = − 2θδ
n(δ+s2(1−δ))1s2n×s1n, and

¯̃A22 = I − 2θ
n(δ+s2(1−δ)) (1s2n×s2n − I). To apply the formula for block inversion, we first want

to identify ¯̃A−1
11 . We conjecture that

P = ¯̃A−1
11 =



a1 b1 · · · b

b a · · · b

... · · · . . .
...

b · · · · · · a


Then we have that 1 −(n1 − 1) θ

n(δ+s1(1−δ))

− θ
n(δ+s1(1−δ))

(
1− (n1 − 2) θ

n(δ+s1(1−δ))

)

 a1

b1

 =

 1

0


which indeed has a unique solution. The inverse of the bottom-right block is identical,

swapping group indices. Hence, we can construct the centrality vector according to the

36Technically this is an approximation since pii = 0, but the loss is insignificant for large n, which is assumed

here.
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formula:

c =


(

¯̃A11 − ¯̃A12
¯̃A−1

22
¯̃A21

)−1

0

0
(

¯̃A22 − ¯̃A21
¯̃A−1

11
¯̃A12

)−1


 I − ¯̃A12

¯̃A−1
22

− ¯̃A21
¯̃A−1

11 I


(A1)

The main-diagonal blocks in the first matrix again have the same structure, with a single

value on the main diagonal and another value on the off-diagonal. This has a similar structure

to the previous matrix, and the inverse can thus be calculated analogously by solving for

main and off-diagonal elements a′i, b
′
i.

37

Remark. There is a substantive interpretation of a′i and b′i: a
′
i is the weighted average of the

number of paths back to a voter in group i through the network, while b′i is the weighted

average of the number of paths to someone else in your group through the network. Because

in the expected network, all voters are connected to all others, i’s centrality does not depend

on paths to the other group, because a linear dependence is induced (all paths within group

essentially correspond to an equivalent cross-party path).

Substituting these values into equation (A1), we then have that

ci = (1 + n−i)a
′
i + (1 + n−i)(ni − 1)b′i

or, without loss of generality,

c1 = n

(
− δθ − δn+ (δ − 1)ns2(δθ + δ + θ − 1)

− (δ − 1)ns(δθ + δ + θ − 1) + (δ − 1)θs

)
·
(
− θ2 + n3s((δ − 1)s− δ)(−θ + s(δ + θ − 1) + 1)

+ θn2s(−δ − θ + s(2δ + θ − 2) + 1) + θn
(
θ + δ2θs− δs+ s− 1

))−1

.

37A unique solution again exists, but we suppress the exact expression as it is extremely complex. The

mathematica file used to calculate these values is available upon request from the authors.
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Since n is by assumption large, this expression is asymptotically equivalent to its leading

term. We can thus simplify further, writing

c1 ∼
−δ + (δ − 1)s2(δθ + δ + θ − 1)− (δ − 1)s(δθ + δ + θ − 1)

sn((δ − 1)s− δ)(−θ + s(δ + θ − 1) + 1)
.

Simplifying and substituting for ψ yields the required expressions.

Proof of Proposition 2. Since we have closed-form expressions for c1 and c2 and given as-

sumptions on u(·), it is sufficient to simply take derivatives of total centrality (which is

invariant in n) with respect to each parameter, and then substitute these into Equation 3.

Since these are highly complex objects, they cannot be signed by inspection, so that we in-

stead solve numerically over the permissible parameter space, yielding the given results. The

exact expression for θ∗ is a highly complex function of other parameters, but it is straightfor-

ward to determine by substitution that it is always at least 0.23 in the permissible parameter

space. See the accompanying Wolfram Mathematica code for full derivation.

Proof of Proposition 3. Since we have closed-form expressions for c1 and c2 and given as-

sumptions on u(·), it is sufficient to simply take derivatives of the ratio of centralities (which

is invariant in n) with respect to each parameter. Since these are highly complex objects,

they cannot be signed by inspection, so that we instead solve numerically over the permissible

parameter space, yielding the given results. See the accompanying Wolfram Mathematica

code for full derivation.

Proof of Proposition 4. It is straightforward to see that, replacing θ with Θ, the modified

centrality of agents i is now equal to their DeGroot centrality (Mostagir, Ozdaglar, and

Siderius 2022) on the normalized network. It then follows from Theorem 1 and from the

proof of Theorem 1 in Mostagir and Siderius (2021) that we can again consider the expected
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network only. The result then follows from an analogous argument to the proof of the

Proposition 1, calculated using the accompanying Wolfram Mathematica code.

Lemma 3. Define the following terms.

1. ∆ij :=
∣∣φj(·|θ : θi = θ)− φj(·|θ : θi = θ)

∣∣
2. W k

ij the (weighted) sum of all length k walks beginning with i and ending with j

3. Iij :=
∑∞

k=1 θ
k
Wk

ij∑
h

∑∞
k=1 θ

kWk
hj

Then, for any sequence of graphs G(n) such that (d̄n/θ)
diam(G) = o(n), there exists a zn > 0

such that ∆ij(G(n)) < znIij(G(n)) which satisfies zn = o(n).38

Proof. Take a graph G, a corresponding ∆ij, and choose a constant zn ∈ R where

zn > z∗n :=
∆ij

Iij
.

Note that the numerator is bounded by 1 and the denominator must be greater than 0, so

it must be that z∗n is finite. Then, zn must satisfy ∆ij < znIij. Moreover, it is clear that

z∗n <
1
Iij .39

Consider now the denominator of Iij. Since this reflects the sum of all walks of length

k ending in j,
∑

h

∑∞
k=1 θ

kW k
hj, it is straightforward to show by induction on the length of

walks k that this must always equal θ/(1− θ).

To see this, note that first when k = 1, it is trivially true that there are dj such walks

(starting from each of j’s neighbors), each with weight 1
dj

, so that
∑

hW
1
hj = 1.

Now assume that for arbitrary k ≥ 2,
∑

hW
k
hj = 1. Then for any walk of length k + 1

with start vertex h, the deletion of h from the walk produces a (not necessarily unique) walk

38This assumption is consistent with the actual characteristics of “well-behaved” social network graphs, both

theoretically and empirically (Jackson 2008).
39 In fact, this inequality is necessarily extremely loose, since ∆ij = 1 would imply that a change in θi moves j

from never voting for candidate 1 to voting for them with certainty, which cannot be true by construction.
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of length k that begins from some h′ adjacent to h. In particular, for each walk wkhj of length

k beginning with vertex h there are dh walks of length k+ 1, each with weight 1
dh
wkhj.

40 The

sum of all of these walks can then be expressed

∑
h′∈Th(G)

1

dh
wkij = wkij.

But note that this enumeration is exhaustive; that is, there is no walk of length k+1 that

cannot be constructed in this fashion, and no two distinct wkij can be extended to produce

the same wk+1
ij . Hence, we have that W k+1 =

∑
iw

k
ij = 1 by the induction assumption.

Moreover, this implies that, regardless of n,

∑
h

∞∑
k=1

θkW k
hj =

∞∑
k=1

θk
∑
h

W k
hj

=
∞∑
k=1

θk

=
θ

1− θ
,

which implies

Iij =
1− θ
θ

∞∑
k=1

θ
k
W k
ij.

Now observe that, defining by d(i, j) the unweighted shortest path distance from i to j,

for any k < d(i, j), there by definition exist no walks from i to j of length k, so that clearly

W k
ij = 0. Then a trivial lower bound on Iij is θ

d(i,j)
W

d(i,j)
ij . Moreover, by definition there

exists at least one path of length d(i, j), which has minimal weight if all vertices on the path

have the maximum degree on the network. Hence, a uniform lower bound for any pair i, j

40Note that here wk
hj refers to a particular k-length walk from h to j, which should not be confused with

whj , the weight of j’s influence on h’s voting behavior from other sections of the paper.
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on G is given by
(
θ/d̄n

)diam(G)
. Hence, we have that

zn <
θ

1− θ

(
d̄n

θ

)diam(G)

= o(n)

by assumption.

Lemma 4. Suppose that G is generated according to the stochastic block model and satis-

fies the assumptions of Theorem 1 and of Lemma 3 almost surely. Then ∆ij converges in

probability to 0 for all i, j as n→∞.

Proof. We aim to bound ∆ij using Lemma 3. Now fix some ε > 0. Then it follows from

the preceding proof that we want to show that for any i, j, there exists N such that for any

N > n, the probability that

max
i,j

∞∑
k=1

θ
k
W k
ij >

θε

1− θ
(A2)

is arbitrarily small.

Now consider the left-hand side of (A2). Note that it follows from the proof of Lemma 1

that, under the given assumptions, we need only consider the average network, since the sum

of walks from i to j is arbitrarily close with probability approaching unity for sufficiently large

n. Now note that the expected network, defined as before, is simply a weighted complete

graph Kn. Consequently, it is straightforward to enumerate all paths from i to j. We show

that for all i, j, k, W̄K
ij = O(n−1).

In general, the maximal weight for each connection i, j occurs when `i = `j and for all

other h, `h 6= `i, so that wij <
pH

(n−1)pL
. Since all walks are at their greatest when all weights

are maximal, a (very loose) upper bound for W̄K
ij is the corresponding entry of the kth power
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of pH
(n−1)pL

(1n×n − In). Now note that

[(
pH

(n− 1)pL
(1n×n − In)

)k]
ij

=

[
pkH

(n− 1)kpkL
(1n×n − In)k

]
ij

≤
[

pkH
(n− 1)kpkL

(1n×n)k
]
ij

=
nk−1pkH

(n− 1)kpkL

= O(n−1)

Hence, p -limn→∞ Iij = 0, and so by Lemma 3, it follows also that p -limn→∞∆ij = 0,

completing the proof.
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